This is a Java Program to implement 2D KD Tree and perform partial search(Searching a node with either of the coordinate). In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Perform Partial Key Search in a K-D Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to perform partial search in 2D KD Tree import java.io.IOException; import java.util.Scanner; class KD2DNode { int axis; double[] x; int id; boolean checked; boolean orientation; KD2DNode Parent; KD2DNode Left; KD2DNode Right; public KD2DNode(double[] x0, int axis0) { x = new double[2]; axis = axis0; for (int k = 0; k < 2; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KD2DNode FindParent(double[] x0) { KD2DNode parent = null; KD2DNode next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KD2DNode Insert(double[] p) { x = new double[2]; KD2DNode parent = FindParent(p); if (equal(p, parent.x, 2) == true) return null; KD2DNode newNode = new KD2DNode(p, parent.axis + 1 < 2 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KD2DTree { KD2DNode Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KD2DNode nearest_neighbour; int KD_id; int nList; KD2DNode CheckedNodes[]; int checked_nodes; KD2DNode List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KD2DTree(int i) { Root = null; KD_id = 1; nList = 0; List = new KD2DNode[i]; CheckedNodes = new KD2DNode[i]; max_boundary = new boolean[2]; min_boundary = new boolean[2]; x_min = new double[2]; x_max = new double[2]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KD2DNode(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KD2DNode pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KD2DNode find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KD2DNode parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 2); ; if (parent.equal(x, parent.x, 2) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KD2DNode node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KD2DNode node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 2; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KD2DNode search_parent(KD2DNode parent, double[] x) { for (int k = 0; k < 2; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KD2DNode search_root = parent; while (parent != null && (n_boundary != 2 * 2)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } public void inorder() { inorder(Root); } private void inorder(KD2DNode root) { if (root != null) { inorder(root.Left); System.out.print("(" + root.x[0] + ", " + root.x[1] + ") "); inorder(root.Right); } } public void preorder() { preorder(Root); } private void preorder(KD2DNode root) { if (root != null) { System.out.print("(" + root.x[0] + ", " + root.x[1] + ") "); inorder(root.Left); inorder(root.Right); } } public void postorder() { postorder(Root); } private void postorder(KD2DNode root) { if (root != null) { inorder(root.Left); inorder(root.Right); System.out.print("(" + root.x[0] + ", " + root.x[1] + ") "); } } public void search(double p) { search(Root, p); } private void search(KD2DNode root, double p) { if (root != null) { search(root.Left, p); if (p == root.x[0] || p == root.x[1]) System.out.print("True (" + root.x[0] + ", " + root.x[1] + ") "); search(root.Right, p); } } } public class KD2D_Partial_Search { public static void main(String args[]) throws IOException { int numpoints = 5; Scanner sc = new Scanner(System.in); KD2DTree kdt = new KD2DTree(numpoints); double x[] = new double[2]; x[0] = 0.0; x[1] = 0.0; kdt.add(x); x[0] = 3.3; x[1] = 1.5; kdt.add(x); x[0] = 4.7; x[1] = 11.1; kdt.add(x); x[0] = 5.0; x[1] = 12.3; kdt.add(x); x[0] = 5.1; x[1] = 1.2; kdt.add(x); System.out.println("Enter the any one of the co-ordinates of the point: <x>/<y>"); double q = sc.nextDouble(); kdt.search(q); System.out.println("\nInorder of 2D Kd tree: "); kdt.inorder(); System.out.println("\nPreorder of 2D Kd tree: "); kdt.preorder(); System.out.println("\npostorder of 2D Kd tree: "); kdt.postorder(); sc.close(); } }
Output:
$ javac KD2D_Partial_Search.java $ java KD2D_Partial_Search Partial Key Search Enter the any one of the co-ordinates of the point: <x>/<y> 5 True (5.0, 12.3) Inorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) Preorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) postorder of 2D Kd tree: (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) (0.0, 0.0)
Related posts:
Marker Interface trong Java
Spring Boot Actuator
Overflow and Underflow in Java
Tips for dealing with HTTP-related problems
Java Program to Implement Depth-limited Search
Biến trong java
Using the Map.Entry Java Class
Java Program to Implement CopyOnWriteArrayList API
Lớp Collectors trong Java 8
Java Program to Compute Cross Product of Two Vectors
JWT – Token-based Authentication trong Jersey 2.x
@Lookup Annotation in Spring
Set Interface trong Java
Java – String to Reader
Using JWT with Spring Security OAuth
Java Program to Perform Searching Based on Locality of Reference
Chương trình Java đầu tiên
Java Program to Find Minimum Number of Edges to Cut to make the Graph Disconnected
Spring Security – security none, filters none, access permitAll
Copy a List to Another List in Java
A Guide to EnumMap
Send email with authentication
Java Program to Implement Patricia Trie
Functional Interface trong Java 8
Java Program to Check whether Undirected Graph is Connected using BFS
Count Occurrences of a Char in a String
How to Manually Authenticate User with Spring Security
Mockito and JUnit 5 – Using ExtendWith
Converting Between Byte Arrays and Hexadecimal Strings in Java
LinkedList trong java
Java 8 Predicate Chain
Java Program to Check Whether an Undirected Graph Contains a Eulerian Cycle