This Java program is to Implement ArrayBlockingQueue API.A bounded blocking queue backed by an array. This queue orders elements FIFO (first-in-first-out). The head of the queue is that element that has been on the queue the longest time. The tail of the queue is that element that has been on the queue the shortest time. New elements are inserted at the tail of the queue, and the queue retrieval operations obtain elements at the head of the queue.
Here is the source code of the Java program to Implement ArrayBlockingQueue API. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Collection; import java.util.Iterator; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.TimeUnit; public class ArrayBlockingQueueImpl<E> { private ArrayBlockingQueue<E> arrayBlockingQueue; /** Creates an ArrayBlockingQueue with the given (fixed) capacity and default access policy. **/ public ArrayBlockingQueueImpl(int capacity) { arrayBlockingQueue = new ArrayBlockingQueue<E>(capacity); } /** Creates an ArrayBlockingQueue with the given (fixed) capacity and the specified access policy. **/ public ArrayBlockingQueueImpl(int capacity, boolean fair) { arrayBlockingQueue = new ArrayBlockingQueue<>(capacity, fair); } /** Creates an ArrayBlockingQueue with the given (fixed) capacity, the specified access policy and * initially containing the elements of the given collection, added in traversal order of the * collection's iterator. **/ public ArrayBlockingQueueImpl(int capacity, boolean fair, Collection<? extends E> c) { arrayBlockingQueue = new ArrayBlockingQueue<E>(capacity, fair, c); } /** * Inserts the specified element at the tail of this queue if it is possible * to do so immediately without exceeding the queue's capacity, returning * true upon success and throwing an IllegalStateException if this queue is full. **/ boolean add(E e) { return arrayBlockingQueue.add(e); } /** Atomically removes all of the elements from this queue. **/ void clear() { arrayBlockingQueue.clear(); } /** Returns true if this queue contains the specified element. **/ public boolean contains(Object o) { return arrayBlockingQueue.contains(o); } /** Removes all available elements from this queue and adds them to the given collection. **/ public int drainTo(Collection<? super E> c) { return arrayBlockingQueue.drainTo(c); } /** Removes at most the given number of available elements from this queue * and adds them to the given collection. **/ public int drainTo(Collection<? super E> c, int maxElements) { return arrayBlockingQueue.drainTo(c, maxElements); } /** Returns an iterator over the elements in this queue in proper sequence. **/ public Iterator<E> iterator() { return arrayBlockingQueue.iterator(); } /** * Inserts the specified element at the tail of this queue if it is possible * to do so immediately without exceeding the queue's capacity, returning * true upon success and false if this queue is full. **/ public boolean offer(E e) { return arrayBlockingQueue.offer(e); } /** * Inserts the specified element at the tail of this queue, waiting up to * the specified wait time for space to become available if the queue is * full. **/ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { return arrayBlockingQueue.offer(e, timeout, unit); } /** * Retrieves, but does not remove, the head of this queue, or returns null * if this queue is empty. **/ public E peek() { return arrayBlockingQueue.peek(); } /** * Retrieves and removes the head of this queue, or returns null if this * queue is empty. **/ public E poll() { return arrayBlockingQueue.poll(); } /** * Retrieves and removes the head of this queue, waiting up to the specified * wait time if necessary for an element to become available. **/ public E poll(long timeout, TimeUnit unit) throws InterruptedException { return arrayBlockingQueue.poll(timeout, unit); } /** * Inserts the specified element at the tail of this queue, waiting for * space to become available if the queue is full. **/ public void put(E e) throws InterruptedException { arrayBlockingQueue.put(e); } /** * Returns the number of additional elements that this queue can ideally (in * the absence of memory or resource constraints) accept without blocking. **/ public int remainingCapacity() { return arrayBlockingQueue.remainingCapacity(); } /** * Removes a single instance of the specified element from this queue, if it * is present. **/ public boolean remove(Object o) { return arrayBlockingQueue.remove(o); } /** Returns the number of elements in this queue. **/ public int size() { return arrayBlockingQueue.size(); } /** * Retrieves and removes the head of this queue, waiting if necessary until * an element becomes available **/ public E take() throws InterruptedException { return arrayBlockingQueue.take(); } /** * Returns an array containing all of the elements in this queue, in proper * sequence. **/ public Object[] toArray() { return arrayBlockingQueue.toArray(); } /** * Returns an array containing all of the elements in this queue, in proper * sequence; the runtime type of the returned array is that of the specified * array. **/ public <T> T[] toArray(T[] a) { return arrayBlockingQueue.toArray(a); } /** Returns a string representation of this collection. **/ public String toString() { return arrayBlockingQueue.toString(); } public static void main(String... arg) { ArrayBlockingQueueImpl<Integer> arrayBlockingQueue = new ArrayBlockingQueueImpl<Integer>(10); try { arrayBlockingQueue.put(100); arrayBlockingQueue.put(200); arrayBlockingQueue.put(300); } catch (InterruptedException e) { e.printStackTrace(); } arrayBlockingQueue.add(400); arrayBlockingQueue.add(500); System.out.println("the elements of the arrayblockingqueue is "); Iterator<Integer> itr = arrayBlockingQueue.iterator(); while (itr.hasNext()) { System.out.print(itr.next() + "\t"); } System.out.println(); arrayBlockingQueue.offer(600); arrayBlockingQueue.offer(700); System.out.println("the peak element of the arrayblockingqueue is(by peeking) " + arrayBlockingQueue.peek()); System.out.println("the peak element of the arrayblockingqueue is(by polling) " + arrayBlockingQueue.poll()); System.out.println("the remaining capacity is " + arrayBlockingQueue.remainingCapacity()); System.out.println("element 300 removed " + arrayBlockingQueue.remove(300)); System.out.println("the arrayblockingqueue contains 400 :" + arrayBlockingQueue.contains(400)); System.out.println("the hash arrayblockingqueue contains 100 :" + arrayBlockingQueue.contains(100)); System.out.println("the size of the arrayblocingqueue is " + arrayBlockingQueue.size()); System.out.println(arrayBlockingQueue); } }
$ javac ArrayBlockingQueueImpl.java $ java ArrayBlockingQueueImpl the elements of the arrayblockingqueue is 100 200 300 400 500 the peak element of the arrayblockingqueue is(by peeking) 100 the peak element of the arrayblockingqueue is(by polling) 100 the remaining capacity is 4 element 300 removed true the arrayblockingqueue contains 400 :true the hash arrayblockingqueue contains 100 :false the size of the arrayblocingqueue is 5 [200, 400, 500, 600, 700]
Related posts:
Wrapper Classes in Java
Spring Cloud – Adding Angular
Làm thế nào tạo instance của một class mà không gọi từ khóa new?
How to Delay Code Execution in Java
Introduction to Spring Cloud OpenFeign
Java Program to Implement EnumMap API
Java CyclicBarrier vs CountDownLatch
Custom Thread Pools In Java 8 Parallel Streams
Java Program to Implement Pagoda
Ignore Null Fields with Jackson
Generic Constructors in Java
Java 8 and Infinite Streams
Spring Data JPA @Query
Lập trình đa luồng với CompletableFuture trong Java 8
What is Thread-Safety and How to Achieve it?
Java Program to Check Whether an Undirected Graph Contains a Eulerian Cycle
Java Program to Implement LinkedBlockingQueue API
Java Program to Search Number Using Divide and Conquer with the Aid of Fibonacci Numbers
Overview of the java.util.concurrent
Java Program to Check if a Directed Graph is a Tree or Not Using DFS
Java Program to Describe the Representation of Graph using Adjacency List
Apache Commons Collections BidiMap
Quick Guide to the Java StringTokenizer
Java Program to Implement Dijkstra’s Algorithm using Priority Queue
Java Program to Check Multiplicability of Two Matrices
Inheritance and Composition (Is-a vs Has-a relationship) in Java
Spring WebClient vs. RestTemplate
Một số từ khóa trong Java
Java Program to Implement Heap
Java Program to Check Whether a Directed Graph Contains a Eulerian Cycle
Java Program to Generate a Random UnDirected Graph for a Given Number of Edges
Send an email with an attachment