This Java program is to Implement ArrayBlockingQueue API.A bounded blocking queue backed by an array. This queue orders elements FIFO (first-in-first-out). The head of the queue is that element that has been on the queue the longest time. The tail of the queue is that element that has been on the queue the shortest time. New elements are inserted at the tail of the queue, and the queue retrieval operations obtain elements at the head of the queue.
Here is the source code of the Java program to Implement ArrayBlockingQueue API. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Collection; import java.util.Iterator; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.TimeUnit; public class ArrayBlockingQueueImpl<E> { private ArrayBlockingQueue<E> arrayBlockingQueue; /** Creates an ArrayBlockingQueue with the given (fixed) capacity and default access policy. **/ public ArrayBlockingQueueImpl(int capacity) { arrayBlockingQueue = new ArrayBlockingQueue<E>(capacity); } /** Creates an ArrayBlockingQueue with the given (fixed) capacity and the specified access policy. **/ public ArrayBlockingQueueImpl(int capacity, boolean fair) { arrayBlockingQueue = new ArrayBlockingQueue<>(capacity, fair); } /** Creates an ArrayBlockingQueue with the given (fixed) capacity, the specified access policy and * initially containing the elements of the given collection, added in traversal order of the * collection's iterator. **/ public ArrayBlockingQueueImpl(int capacity, boolean fair, Collection<? extends E> c) { arrayBlockingQueue = new ArrayBlockingQueue<E>(capacity, fair, c); } /** * Inserts the specified element at the tail of this queue if it is possible * to do so immediately without exceeding the queue's capacity, returning * true upon success and throwing an IllegalStateException if this queue is full. **/ boolean add(E e) { return arrayBlockingQueue.add(e); } /** Atomically removes all of the elements from this queue. **/ void clear() { arrayBlockingQueue.clear(); } /** Returns true if this queue contains the specified element. **/ public boolean contains(Object o) { return arrayBlockingQueue.contains(o); } /** Removes all available elements from this queue and adds them to the given collection. **/ public int drainTo(Collection<? super E> c) { return arrayBlockingQueue.drainTo(c); } /** Removes at most the given number of available elements from this queue * and adds them to the given collection. **/ public int drainTo(Collection<? super E> c, int maxElements) { return arrayBlockingQueue.drainTo(c, maxElements); } /** Returns an iterator over the elements in this queue in proper sequence. **/ public Iterator<E> iterator() { return arrayBlockingQueue.iterator(); } /** * Inserts the specified element at the tail of this queue if it is possible * to do so immediately without exceeding the queue's capacity, returning * true upon success and false if this queue is full. **/ public boolean offer(E e) { return arrayBlockingQueue.offer(e); } /** * Inserts the specified element at the tail of this queue, waiting up to * the specified wait time for space to become available if the queue is * full. **/ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { return arrayBlockingQueue.offer(e, timeout, unit); } /** * Retrieves, but does not remove, the head of this queue, or returns null * if this queue is empty. **/ public E peek() { return arrayBlockingQueue.peek(); } /** * Retrieves and removes the head of this queue, or returns null if this * queue is empty. **/ public E poll() { return arrayBlockingQueue.poll(); } /** * Retrieves and removes the head of this queue, waiting up to the specified * wait time if necessary for an element to become available. **/ public E poll(long timeout, TimeUnit unit) throws InterruptedException { return arrayBlockingQueue.poll(timeout, unit); } /** * Inserts the specified element at the tail of this queue, waiting for * space to become available if the queue is full. **/ public void put(E e) throws InterruptedException { arrayBlockingQueue.put(e); } /** * Returns the number of additional elements that this queue can ideally (in * the absence of memory or resource constraints) accept without blocking. **/ public int remainingCapacity() { return arrayBlockingQueue.remainingCapacity(); } /** * Removes a single instance of the specified element from this queue, if it * is present. **/ public boolean remove(Object o) { return arrayBlockingQueue.remove(o); } /** Returns the number of elements in this queue. **/ public int size() { return arrayBlockingQueue.size(); } /** * Retrieves and removes the head of this queue, waiting if necessary until * an element becomes available **/ public E take() throws InterruptedException { return arrayBlockingQueue.take(); } /** * Returns an array containing all of the elements in this queue, in proper * sequence. **/ public Object[] toArray() { return arrayBlockingQueue.toArray(); } /** * Returns an array containing all of the elements in this queue, in proper * sequence; the runtime type of the returned array is that of the specified * array. **/ public <T> T[] toArray(T[] a) { return arrayBlockingQueue.toArray(a); } /** Returns a string representation of this collection. **/ public String toString() { return arrayBlockingQueue.toString(); } public static void main(String... arg) { ArrayBlockingQueueImpl<Integer> arrayBlockingQueue = new ArrayBlockingQueueImpl<Integer>(10); try { arrayBlockingQueue.put(100); arrayBlockingQueue.put(200); arrayBlockingQueue.put(300); } catch (InterruptedException e) { e.printStackTrace(); } arrayBlockingQueue.add(400); arrayBlockingQueue.add(500); System.out.println("the elements of the arrayblockingqueue is "); Iterator<Integer> itr = arrayBlockingQueue.iterator(); while (itr.hasNext()) { System.out.print(itr.next() + "\t"); } System.out.println(); arrayBlockingQueue.offer(600); arrayBlockingQueue.offer(700); System.out.println("the peak element of the arrayblockingqueue is(by peeking) " + arrayBlockingQueue.peek()); System.out.println("the peak element of the arrayblockingqueue is(by polling) " + arrayBlockingQueue.poll()); System.out.println("the remaining capacity is " + arrayBlockingQueue.remainingCapacity()); System.out.println("element 300 removed " + arrayBlockingQueue.remove(300)); System.out.println("the arrayblockingqueue contains 400 :" + arrayBlockingQueue.contains(400)); System.out.println("the hash arrayblockingqueue contains 100 :" + arrayBlockingQueue.contains(100)); System.out.println("the size of the arrayblocingqueue is " + arrayBlockingQueue.size()); System.out.println(arrayBlockingQueue); } }
$ javac ArrayBlockingQueueImpl.java $ java ArrayBlockingQueueImpl the elements of the arrayblockingqueue is 100 200 300 400 500 the peak element of the arrayblockingqueue is(by peeking) 100 the peak element of the arrayblockingqueue is(by polling) 100 the remaining capacity is 4 element 300 removed true the arrayblockingqueue contains 400 :true the hash arrayblockingqueue contains 100 :false the size of the arrayblocingqueue is 5 [200, 400, 500, 600, 700]
Related posts:
Java – InputStream to Reader
Guide to Java 8’s Collectors
Jackson JSON Views
Introduction to PCollections
Convert Time to Milliseconds in Java
Xử lý ngoại lệ đối với trường hợp ghi đè phương thức trong java
Java Program to Implement Quick Hull Algorithm to Find Convex Hull
Java Program to Implement Rope
Annotation trong Java 8
Hướng dẫn Java Design Pattern – Intercepting Filter
Hướng dẫn sử dụng biểu thức chính quy (Regular Expression) trong Java
Java Program to Implement Maximum Length Chain of Pairs
Java Program to Implement CopyOnWriteArrayList API
Java Program to subtract two large numbers using Linked Lists
Lớp Collections trong Java (Collections Utility Class)
Java Program to Implement Bresenham Line Algorithm
New in Spring Security OAuth2 – Verify Claims
Quản lý bộ nhớ trong Java với Heap Space vs Stack
Apache Commons Collections BidiMap
The DAO with Spring and Hibernate
Spring MVC and the @ModelAttribute Annotation
Spring Boot - Unit Test Cases
Notify User of Login From New Device or Location
Java Program to Implement Patricia Trie
Comparing Arrays in Java
File Upload with Spring MVC
Java Program to Implement Max-Flow Min-Cut Theorem
Java Convenience Factory Methods for Collections
Converting Between Byte Arrays and Hexadecimal Strings in Java
Spring Security Remember Me
Java Program to Implement Fermat Primality Test Algorithm
Runnable vs. Callable in Java