This is a java program to perform searching based on locality of refernce. The Locality of Reference principle says that if an element of a list is accessed it might also be accessed in near future. So we store it to the front of the list.
Here is the source code of the Java Program to Perform Searching Based on Locality of Reference. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/* * Follows recently accessed elements should be referred more so kept on top of * the list */ package com.maixuanviet.combinatorial; import java.util.LinkedList; import java.util.List; import java.util.Random; import java.util.Scanner; public class LocalityBasedSearching { public static void main(String[] args) { List<Integer> items = new LinkedList<Integer>(); Integer n = 10; Scanner sc = new Scanner(System.in); Random rand = new Random(); while (n > 0) { items.add(rand.nextInt(100)); n--; } System.out.println(items.toString()); boolean flag = true; boolean found = false; Integer numberofInstance; while (flag == true) { numberofInstance = 0; System.out.println("Enter the element to find: "); Integer search = sc.nextInt(); for (int i = 0; i < items.size(); i++) { if (items.get(i).equals(search)) { found = true; System.out.println("Element found at index " + i + "\nReordering list..."); // Integer temp = items.get(numberofInstance); // items.set(numberofInstance, search); items.add(numberofInstance, search); items.remove(i + 1); // items.set(i, temp); System.out.println("Reordered list: " + items.toString()); numberofInstance++; // break; } } if (found == false) { System.out.println("No such element found."); } System.out.println("Do you want to continue? <true>/<false>"); flag = sc.nextBoolean(); } sc.close(); } }
Output:
$ javac LocalityBasedSearching.java $ java LocalityBasedSearching [52, 94, 58, 8, 78, 0, 30, 81, 16, 58] Enter the element to find: 8 Element found at index 3 Reordering list... Reordered list: [8, 52, 94, 58, 78, 0, 30, 81, 16, 58] Do you want to continue? <true>/<false> true Enter the element to find: 58 Element found at index 3 Reordering list... Reordered list: [58, 8, 52, 94, 78, 0, 30, 81, 16, 58] Element found at index 9 Reordering list... Reordered list: [58, 58, 8, 52, 94, 78, 0, 30, 81, 16] Do you want to continue? <true>/<false> true Enter the element to find: 94 Element found at index 4 Reordering list... Reordered list: [94, 58, 58, 8, 52, 78, 0, 30, 81, 16] Do you want to continue? <true>/<false> false
Related posts:
Java Program to Implement Sorted Array
Java Program to Find the Peak Element of an Array O(n) time (Naive Method)
Xây dựng ứng dụng Client-Server với Socket trong Java
Java Program to Represent Graph Using 2D Arrays
Java Program to Implement LinkedBlockingDeque API
Server-Sent Events in Spring
An Intro to Spring Cloud Task
Finding the Differences Between Two Lists in Java
Quick Guide on Loading Initial Data with Spring Boot
Java Program to Implement K Way Merge Algorithm
Allow user:password in URL
A Guide to Java HashMap
Set Interface trong Java
Spring Boot - Scheduling
Java Program to Implement Karatsuba Multiplication Algorithm
Sử dụng CyclicBarrier trong Java
Java Program to Perform Partition of an Integer in All Possible Ways
Java Program to Find Shortest Path Between All Vertices Using Floyd-Warshall’s Algorithm
Luồng Daemon (Daemon Thread) trong Java
Java Program to Implement Control Table
Java Program to Implement Double Ended Queue
Java Program to Implement Min Hash
Java Program to Find the Vertex Connectivity of a Graph
Intro to Spring Boot Starters
Working with Tree Model Nodes in Jackson
JavaScript Searching: getElement*, querySelector*
Flattening Nested Collections in Java
Dockerizing a Spring Boot Application
Create a Custom Auto-Configuration with Spring Boot
Comparing Arrays in Java
A Guide to Queries in Spring Data MongoDB
Spring Boot - File Handling