This is a java program to find permutation of N numbers using Heap’s Algorithm. Heap’s algorithm is an algorithm used for generating all possible permutations of some given length.
Here is the source code of the Java Program to Implement Heap’s Algorithm for Permutation of N Numbers. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.sanfoundry.combinatorial;
import java.util.Arrays;
import java.util.Scanner;
public class HeapsPermutation
{
private static void swap(int[] v, int i, int j)
{
int t = v[i];
v[i] = v[j];
v[j] = t;
}
public void permute(int[] v, int n)
{
if (n == 1)
{
System.out.println(Arrays.toString(v));
}
else
{
for (int i = 0; i < n; i++)
{
permute(v, n - 1);
if (n % 2 == 1)
{
swap(v, 0, n - 1);
}
else
{
swap(v, i, n - 1);
}
}
}
}
public static void main(String[] args)
{
System.out.println("Enter the number of elements in a sequence: ");
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
System.out.println("Enter the sequence: ");
int sequence[] = new int[n];
for (int i = 0; i < n; i++)
{
sequence[i] = sc.nextInt();
}
new HeapsPermutation().permute(sequence, n);
sc.close();
}
}
Output:
$ javac HeapsPermutation.java $ java HeapsPermutation Enter the number of elements in a sequence: 5 Enter the sequence: 2 4 7 3 8 [2, 4, 7, 3, 8] [4, 2, 7, 3, 8] [7, 2, 4, 3, 8] [2, 7, 4, 3, 8] [4, 7, 2, 3, 8] [7, 4, 2, 3, 8] [3, 4, 7, 2, 8] [4, 3, 7, 2, 8] [7, 3, 4, 2, 8] [3, 7, 4, 2, 8] [4, 7, 3, 2, 8] [7, 4, 3, 2, 8] [3, 2, 7, 4, 8] [2, 3, 7, 4, 8] [7, 3, 2, 4, 8] [3, 7, 2, 4, 8] [2, 7, 3, 4, 8] [7, 2, 3, 4, 8] [3, 2, 4, 7, 8] [2, 3, 4, 7, 8] [4, 3, 2, 7, 8] [3, 4, 2, 7, 8] [2, 4, 3, 7, 8] [4, 2, 3, 7, 8] [8, 2, 4, 7, 3] [2, 8, 4, 7, 3] [4, 8, 2, 7, 3] [8, 4, 2, 7, 3] [2, 4, 8, 7, 3] [4, 2, 8, 7, 3] [7, 2, 4, 8, 3] [2, 7, 4, 8, 3] [4, 7, 2, 8, 3] [7, 4, 2, 8, 3] [2, 4, 7, 8, 3] [4, 2, 7, 8, 3] [7, 8, 4, 2, 3] [8, 7, 4, 2, 3] [4, 7, 8, 2, 3] [7, 4, 8, 2, 3] [8, 4, 7, 2, 3] [4, 8, 7, 2, 3] [7, 8, 2, 4, 3] [8, 7, 2, 4, 3] [2, 7, 8, 4, 3] [7, 2, 8, 4, 3] [8, 2, 7, 4, 3] [2, 8, 7, 4, 3] [3, 8, 2, 4, 7] [8, 3, 2, 4, 7] [2, 3, 8, 4, 7] [3, 2, 8, 4, 7] [8, 2, 3, 4, 7] [2, 8, 3, 4, 7] [4, 8, 2, 3, 7] [8, 4, 2, 3, 7] [2, 4, 8, 3, 7] [4, 2, 8, 3, 7] [8, 2, 4, 3, 7] [2, 8, 4, 3, 7] [4, 3, 2, 8, 7] [3, 4, 2, 8, 7] [2, 4, 3, 8, 7] [4, 2, 3, 8, 7] [3, 2, 4, 8, 7] [2, 3, 4, 8, 7] [4, 3, 8, 2, 7] [3, 4, 8, 2, 7] [8, 4, 3, 2, 7] [4, 8, 3, 2, 7] [3, 8, 4, 2, 7] [8, 3, 4, 2, 7] [7, 3, 8, 2, 4] [3, 7, 8, 2, 4] [8, 7, 3, 2, 4] [7, 8, 3, 2, 4] [3, 8, 7, 2, 4] [8, 3, 7, 2, 4] [2, 3, 8, 7, 4] [3, 2, 8, 7, 4] [8, 2, 3, 7, 4] [2, 8, 3, 7, 4] [3, 8, 2, 7, 4] [8, 3, 2, 7, 4] [2, 7, 8, 3, 4] [7, 2, 8, 3, 4] [8, 2, 7, 3, 4] [2, 8, 7, 3, 4] [7, 8, 2, 3, 4] [8, 7, 2, 3, 4] [2, 7, 3, 8, 4] [7, 2, 3, 8, 4] [3, 2, 7, 8, 4] [2, 3, 7, 8, 4] [7, 3, 2, 8, 4] [3, 7, 2, 8, 4] [4, 7, 3, 8, 2] [7, 4, 3, 8, 2] [3, 4, 7, 8, 2] [4, 3, 7, 8, 2] [7, 3, 4, 8, 2] [3, 7, 4, 8, 2] [8, 7, 3, 4, 2] [7, 8, 3, 4, 2] [3, 8, 7, 4, 2] [8, 3, 7, 4, 2] [7, 3, 8, 4, 2] [3, 7, 8, 4, 2] [8, 4, 3, 7, 2] [4, 8, 3, 7, 2] [3, 8, 4, 7, 2] [8, 3, 4, 7, 2] [4, 3, 8, 7, 2] [3, 4, 8, 7, 2] [8, 4, 7, 3, 2] [4, 8, 7, 3, 2] [7, 8, 4, 3, 2] [8, 7, 4, 3, 2] [4, 7, 8, 3, 2] [7, 4, 8, 3, 2]
Related posts:
Java Program to Emulate N Dice Roller
Semaphore trong Java
Java Program to Implement Sorted List
Removing all duplicates from a List in Java
Static Content in Spring WebFlux
A Quick JUnit vs TestNG Comparison
Working with Tree Model Nodes in Jackson
Java Program to Implement Variable length array
Java Program to Solve the Fractional Knapsack Problem
Java Program to Implement Naor-Reingold Pseudo Random Function
Spring Boot - Enabling Swagger2
Apache Commons Collections BidiMap
Java Program to Implement LinkedHashSet API
wait() and notify() Methods in Java
The DAO with JPA and Spring
Request a Delivery / Read Receipt in Javamail
Java Program to Generate Randomized Sequence of Given Range of Numbers
Java Program to Check Cycle in a Graph using Topological Sort
Giới thiệu HATEOAS
Spring Boot - Rest Controller Unit Test
Java Program to Implement Queue using Two Stacks
MyBatis with Spring
The Spring @Controller and @RestController Annotations
Java Program to Implement wheel Sieve to Generate Prime Numbers Between Given Range
Java Program to Implement Binary Search Tree
Guide to CountDownLatch in Java
Java Program to Implement Sorted Vector
Reactive WebSockets with Spring 5
Java Program to Find Nearest Neighbor Using Linear Search
Spring WebClient vs. RestTemplate
Java Streams vs Vavr Streams
Java Program to Generate Random Hexadecimal Byte