This is a java program to solve TSP using MST.
Here is the source code of the Java Program to Solve TSP Using Minimum Spanning Trees. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.hardgraph; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.util.StringTokenizer; public class TSPUsingMST { // Arrays to keep track of info. related to each city private String[] cityName; private String[] cityState; private int[] cityLat; private int[] cityLong; private int[] cityPop; // 2-D array to keep track of pairwise distances between cities private int[][] distances; // number of cities private static int numCities; public TSPUsingMST(int n) { numCities = n; // Allotting the space for each 1-D array cityName = new String[numCities]; cityState = new String[numCities]; cityLat = new int[numCities]; cityLong = new int[numCities]; cityPop = new int[numCities]; // Allocate space for each 2-D array. These arrays have 0 elements in // row 0, // 1 element in row 1, 2 elements in row 2, etc. distances = new int[numCities][]; for (int i = 0; i < numCities; i++) distances[i] = new int[i]; try { // Construct a buffered reader object and connect it to the files // "miles.dat" BufferedReader in = new BufferedReader(new FileReader("miles.dat")); // A counter that keeps track of the index of the current city being // read int cityNumber = 0; // While-loop for reading in data from "miles.dat." At the beginning // of the while-loop // the expectation is that we'll be reading a line containing the // city name. Instead, // if we encounter a line that starts with "*" then we skip to the // next line while (cityNumber < numCities) { // Read in a line String line = in.readLine(); // Skip the rest of the loop if line starts with a "*" if (line.charAt(0) == '*') continue; // Otherwise tokenize the line StringTokenizer tokenizedLine = new StringTokenizer(line, ",[]"); // Putting actual data into correct position in the array cityName[cityNumber] = tokenizedLine.nextToken(); cityState[cityNumber] = (tokenizedLine.nextToken()).trim(); // trim() // gets // rid // of // leading/trailing // blanks cityLat[cityNumber] = Integer.parseInt(tokenizedLine .nextToken()); cityLong[cityNumber] = Integer.parseInt(tokenizedLine .nextToken()); cityPop[cityNumber] = Integer.parseInt(tokenizedLine .nextToken()); // while loop to put distances in the array; this may need to // read several lines int mileNumber = 0; while (mileNumber < cityNumber) { // Read a mileage line and tokenize it String mileage = in.readLine(); StringTokenizer tokenizedMileage = new StringTokenizer( mileage, " "); // Read all the mileage data in this line into row // cityNumber; increment // mileNumber after each read while (tokenizedMileage.hasMoreTokens()) { distances[cityNumber][cityNumber - mileNumber - 1] = Integer .parseInt(tokenizedMileage.nextToken()); mileNumber++; } } // end of while reading distances cityNumber++; } // end of while reading cities in.close(); } // end of try catch (IOException e) { System.out.println("File not found."); } } // end of TSPTester() constructor // A simple getIndex method to help test the constructor int getIndex(String city, String state) { int location; for (location = 0; location < numCities; location++) if ((cityName[location].equals(city)) && (cityState[location].equals(state))) return location; return -1; } // Print information about a city, given a city index void printCityInfo(int index) { System.out .println(cityName[index] + " " + cityState[index] + " " + cityLat[index] + " " + cityLong[index] + " " + cityPop[index]); } // Print distance information between a given pair of cities void printDistanceInfo(int i, int j) { if (i < j) System.out.println(distances[j][i]); else System.out.println(distances[i][j]); } int getDistance(int i, int j) { if (i < j) return distances[j][i]; else if (j < i) return distances[i][j]; else return 0; } int[] greedyTSP() { // Find a cheapest triangle // Load triangle 0-1-2 into the the first 3 slots of the greedy array int[] greedy = new int[numCities]; int currentDistance; greedy[0] = 0; greedy[1] = 1; greedy[2] = 2; int currentBestDistance = getDistance(0, 1) + getDistance(1, 2) + getDistance(2, 0); for (int i = 0; i < numCities; i++) for (int j = 0; j < i; j++) for (int k = 0; k < j; k++) if ((currentDistance = getDistance(i, j) + getDistance(j, k) + getDistance(i, k)) < currentBestDistance) { greedy[0] = i; greedy[1] = j; greedy[2] = k; currentBestDistance = currentDistance; } // Try greedily to add a city that yields the smallest increase // in the cost of the tour int partialTourSize = 3; boolean[] visited = new boolean[numCities]; for (int i = 0; i < numCities; i++) visited[i] = false; visited[greedy[0]] = true; visited[greedy[1]] = true; visited[greedy[2]] = true; // Main loop: keep repeating until partial tour covers all cities while (partialTourSize < numCities) { int smallestIncrease = Integer.MAX_VALUE; int increase = 0; int bestInsertionPoint = 0; int bestCity = 0; // Scan through all cities, stopping at unvisited cities for (int i = 0; i < numCities; i++) { if (!visited[i]) { // Consider all possible positions of inserting city i into // the tour // and record the smallest increase for (int j = 0; j < partialTourSize; j++) { increase = getDistance(greedy[j], i) + getDistance(i, greedy[(j + 1) % numCities]) - getDistance(greedy[j], greedy[(j + 1) % numCities]); if (increase < smallestIncrease) { smallestIncrease = increase; bestCity = i; bestInsertionPoint = j; } // end of if we have found a smaller increase } // end of for-j } // end of if not visited } // end of for-i // Now we are ready to insert the bestCity at the bestInsertionPoint for (int j = partialTourSize - 1; j > bestInsertionPoint; j--) greedy[j + 1] = greedy[j]; greedy[bestInsertionPoint + 1] = bestCity; visited[bestCity] = true; partialTourSize++; } // end-while return greedy; } void copy(int[] source, int[] dest) { for (int i = 0; i < dest.length; i++) dest[i] = source[i]; } void TSP(int[] R, int partialTourSize, boolean[] visited, int[] T) { // Base case: we have discovered a tour better than T if ((partialTourSize == numCities) && (cost(R) < cost(T))) { System.out.println("Base case. Tour cost is " + cost(R)); copy(R, T); return; } // Another base case: our partial tour is not worth completing if (cost(R, partialTourSize) >= cost(T)) return; // Recursive case: R is not complete and is currently better than T // and is therefore worth completing for (int i = 0; i < numCities; i++) { if (!visited[i]) { // System.out.println("Appending " + i); visited[i] = true; R[partialTourSize++] = i; TSP(R, partialTourSize, visited, T); partialTourSize--; visited[i] = false; // System.out.println("Deleting " + i); } } // end of for-loop } // end of TSP double cost(int[] tour) { return cost(tour, tour.length); } double cost(int[] tour, int tourSize) { double c = 0; for (int i = 0; i < tourSize - 1; i++) c = c + getDistance(tour[i], tour[i + 1]); c = c + getDistance(tour[tourSize - 1], tour[0]); return c; } // Main method public static void main(String[] args) { int n = 15; TSPUsingMST T = new TSPUsingMST(n); // Initialize the list of vertices in the tree // Initially, no one except vertex 0 is in the tree boolean[] visited = new boolean[n]; for (int i = 0; i < n; i++) visited[i] = false; visited[0] = true; // Initialize the int[] that maintains the tree to default values // No vertices have parents set, except vertex 0 whose parent is itself int[] tree = new int[n]; for (int i = 0; i < n; i++) tree[i] = -1; tree[0] = 0; for (int i = 1; i <= n - 1; i++) { long minWeight = Long.MAX_VALUE; int bestVertex = -1; int bestParent = -1; for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { if ((visited[j]) && (!visited[k])) { if (T.getDistance(j, k) < minWeight) { minWeight = T.getDistance(j, k); bestVertex = k; bestParent = j; } // end if better distance is found } // end if an edge between a visited and an unvisited is // found } // end for-k } // end for-j // Update visited and tree visited[bestVertex] = true; tree[bestVertex] = bestParent; } // end for-i // Printing the MST for (int i = 1; i < n; i++) System.out.println(T.cityName[i] + " " + T.cityState[i] + ", " + T.cityName[tree[i]] + " " + T.cityState[tree[i]]); // Compting the MST cost long cost = 0; for (int i = 0; i < n; i++) cost += T.getDistance(i, tree[i]); System.out.println("The cost of the minimum spanning tree is " + cost); } // end main method } // end class
Output:
$ javac TSPUsingMST.java $ java TSPUsingMST Yankton SD, Wisconsin Dells WI Yakima WA, Williston ND Worcester MA, Wilmington DE Wisconsin Dells WI, Youngstown OH Winston-Salem NC, Winchester VA Winnipeg MB, Yankton SD Winchester VA, Wilmington DE Wilmington NC, Winston-Salem NC Wilmington DE, Williamsport PA Williston ND, Winnipeg MB Williamsport PA, Youngstown OH Williamson WV, Winston-Salem NC Wichita Falls TX, Wichita KS Wichita KS, Yankton SD The cost of the minimum spanning tree is 5461
Related posts:
Introduction to Spring MVC HandlerInterceptor
Comparing Objects in Java
Quick Guide on Loading Initial Data with Spring Boot
Hướng dẫn sử dụng luồng vào ra ký tự trong Java
Toán tử instanceof trong java
Java Program to Implement Miller Rabin Primality Test Algorithm
DistinctBy in the Java Stream API
How to Get a Name of a Method Being Executed?
Java Program to Implement Sorted Doubly Linked List
Guide to Guava Table
Java Program to Find the Longest Subsequence Common to All Sequences in a Set of Sequences
Java List UnsupportedOperationException
Guide to Guava Multimap
Spring Boot Configuration with Jasypt
Java Program to Implement Gift Wrapping Algorithm in Two Dimensions
Tính đa hình (Polymorphism) trong Java
Hashing a Password in Java
Java Program to Implement Wagner and Fisher Algorithm for online String Matching
Quick Guide to Spring Controllers
Java Program to Implement ConcurrentSkipListMap API
Java Program to Implement Ternary Search Algorithm
Java Program to Implement Hash Trie
Java Program to Solve the Fractional Knapsack Problem
Finding the Differences Between Two Lists in Java
ThreadPoolTaskExecutor corePoolSize vs. maxPoolSize
Java Program to Find MST (Minimum Spanning Tree) using Kruskal’s Algorithm
Serialize Only Fields that meet a Custom Criteria with Jackson
Java Program to Implement Hash Tables with Quadratic Probing
Spring Boot Security Auto-Configuration
Copy a List to Another List in Java
Compare Two JSON Objects with Jackson
Java Program to Represent Graph Using Adjacency List