This is a java program to solve TSP using MST.
Here is the source code of the Java Program to Solve TSP Using Minimum Spanning Trees. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.hardgraph; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.util.StringTokenizer; public class TSPUsingMST { // Arrays to keep track of info. related to each city private String[] cityName; private String[] cityState; private int[] cityLat; private int[] cityLong; private int[] cityPop; // 2-D array to keep track of pairwise distances between cities private int[][] distances; // number of cities private static int numCities; public TSPUsingMST(int n) { numCities = n; // Allotting the space for each 1-D array cityName = new String[numCities]; cityState = new String[numCities]; cityLat = new int[numCities]; cityLong = new int[numCities]; cityPop = new int[numCities]; // Allocate space for each 2-D array. These arrays have 0 elements in // row 0, // 1 element in row 1, 2 elements in row 2, etc. distances = new int[numCities][]; for (int i = 0; i < numCities; i++) distances[i] = new int[i]; try { // Construct a buffered reader object and connect it to the files // "miles.dat" BufferedReader in = new BufferedReader(new FileReader("miles.dat")); // A counter that keeps track of the index of the current city being // read int cityNumber = 0; // While-loop for reading in data from "miles.dat." At the beginning // of the while-loop // the expectation is that we'll be reading a line containing the // city name. Instead, // if we encounter a line that starts with "*" then we skip to the // next line while (cityNumber < numCities) { // Read in a line String line = in.readLine(); // Skip the rest of the loop if line starts with a "*" if (line.charAt(0) == '*') continue; // Otherwise tokenize the line StringTokenizer tokenizedLine = new StringTokenizer(line, ",[]"); // Putting actual data into correct position in the array cityName[cityNumber] = tokenizedLine.nextToken(); cityState[cityNumber] = (tokenizedLine.nextToken()).trim(); // trim() // gets // rid // of // leading/trailing // blanks cityLat[cityNumber] = Integer.parseInt(tokenizedLine .nextToken()); cityLong[cityNumber] = Integer.parseInt(tokenizedLine .nextToken()); cityPop[cityNumber] = Integer.parseInt(tokenizedLine .nextToken()); // while loop to put distances in the array; this may need to // read several lines int mileNumber = 0; while (mileNumber < cityNumber) { // Read a mileage line and tokenize it String mileage = in.readLine(); StringTokenizer tokenizedMileage = new StringTokenizer( mileage, " "); // Read all the mileage data in this line into row // cityNumber; increment // mileNumber after each read while (tokenizedMileage.hasMoreTokens()) { distances[cityNumber][cityNumber - mileNumber - 1] = Integer .parseInt(tokenizedMileage.nextToken()); mileNumber++; } } // end of while reading distances cityNumber++; } // end of while reading cities in.close(); } // end of try catch (IOException e) { System.out.println("File not found."); } } // end of TSPTester() constructor // A simple getIndex method to help test the constructor int getIndex(String city, String state) { int location; for (location = 0; location < numCities; location++) if ((cityName[location].equals(city)) && (cityState[location].equals(state))) return location; return -1; } // Print information about a city, given a city index void printCityInfo(int index) { System.out .println(cityName[index] + " " + cityState[index] + " " + cityLat[index] + " " + cityLong[index] + " " + cityPop[index]); } // Print distance information between a given pair of cities void printDistanceInfo(int i, int j) { if (i < j) System.out.println(distances[j][i]); else System.out.println(distances[i][j]); } int getDistance(int i, int j) { if (i < j) return distances[j][i]; else if (j < i) return distances[i][j]; else return 0; } int[] greedyTSP() { // Find a cheapest triangle // Load triangle 0-1-2 into the the first 3 slots of the greedy array int[] greedy = new int[numCities]; int currentDistance; greedy[0] = 0; greedy[1] = 1; greedy[2] = 2; int currentBestDistance = getDistance(0, 1) + getDistance(1, 2) + getDistance(2, 0); for (int i = 0; i < numCities; i++) for (int j = 0; j < i; j++) for (int k = 0; k < j; k++) if ((currentDistance = getDistance(i, j) + getDistance(j, k) + getDistance(i, k)) < currentBestDistance) { greedy[0] = i; greedy[1] = j; greedy[2] = k; currentBestDistance = currentDistance; } // Try greedily to add a city that yields the smallest increase // in the cost of the tour int partialTourSize = 3; boolean[] visited = new boolean[numCities]; for (int i = 0; i < numCities; i++) visited[i] = false; visited[greedy[0]] = true; visited[greedy[1]] = true; visited[greedy[2]] = true; // Main loop: keep repeating until partial tour covers all cities while (partialTourSize < numCities) { int smallestIncrease = Integer.MAX_VALUE; int increase = 0; int bestInsertionPoint = 0; int bestCity = 0; // Scan through all cities, stopping at unvisited cities for (int i = 0; i < numCities; i++) { if (!visited[i]) { // Consider all possible positions of inserting city i into // the tour // and record the smallest increase for (int j = 0; j < partialTourSize; j++) { increase = getDistance(greedy[j], i) + getDistance(i, greedy[(j + 1) % numCities]) - getDistance(greedy[j], greedy[(j + 1) % numCities]); if (increase < smallestIncrease) { smallestIncrease = increase; bestCity = i; bestInsertionPoint = j; } // end of if we have found a smaller increase } // end of for-j } // end of if not visited } // end of for-i // Now we are ready to insert the bestCity at the bestInsertionPoint for (int j = partialTourSize - 1; j > bestInsertionPoint; j--) greedy[j + 1] = greedy[j]; greedy[bestInsertionPoint + 1] = bestCity; visited[bestCity] = true; partialTourSize++; } // end-while return greedy; } void copy(int[] source, int[] dest) { for (int i = 0; i < dest.length; i++) dest[i] = source[i]; } void TSP(int[] R, int partialTourSize, boolean[] visited, int[] T) { // Base case: we have discovered a tour better than T if ((partialTourSize == numCities) && (cost(R) < cost(T))) { System.out.println("Base case. Tour cost is " + cost(R)); copy(R, T); return; } // Another base case: our partial tour is not worth completing if (cost(R, partialTourSize) >= cost(T)) return; // Recursive case: R is not complete and is currently better than T // and is therefore worth completing for (int i = 0; i < numCities; i++) { if (!visited[i]) { // System.out.println("Appending " + i); visited[i] = true; R[partialTourSize++] = i; TSP(R, partialTourSize, visited, T); partialTourSize--; visited[i] = false; // System.out.println("Deleting " + i); } } // end of for-loop } // end of TSP double cost(int[] tour) { return cost(tour, tour.length); } double cost(int[] tour, int tourSize) { double c = 0; for (int i = 0; i < tourSize - 1; i++) c = c + getDistance(tour[i], tour[i + 1]); c = c + getDistance(tour[tourSize - 1], tour[0]); return c; } // Main method public static void main(String[] args) { int n = 15; TSPUsingMST T = new TSPUsingMST(n); // Initialize the list of vertices in the tree // Initially, no one except vertex 0 is in the tree boolean[] visited = new boolean[n]; for (int i = 0; i < n; i++) visited[i] = false; visited[0] = true; // Initialize the int[] that maintains the tree to default values // No vertices have parents set, except vertex 0 whose parent is itself int[] tree = new int[n]; for (int i = 0; i < n; i++) tree[i] = -1; tree[0] = 0; for (int i = 1; i <= n - 1; i++) { long minWeight = Long.MAX_VALUE; int bestVertex = -1; int bestParent = -1; for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { if ((visited[j]) && (!visited[k])) { if (T.getDistance(j, k) < minWeight) { minWeight = T.getDistance(j, k); bestVertex = k; bestParent = j; } // end if better distance is found } // end if an edge between a visited and an unvisited is // found } // end for-k } // end for-j // Update visited and tree visited[bestVertex] = true; tree[bestVertex] = bestParent; } // end for-i // Printing the MST for (int i = 1; i < n; i++) System.out.println(T.cityName[i] + " " + T.cityState[i] + ", " + T.cityName[tree[i]] + " " + T.cityState[tree[i]]); // Compting the MST cost long cost = 0; for (int i = 0; i < n; i++) cost += T.getDistance(i, tree[i]); System.out.println("The cost of the minimum spanning tree is " + cost); } // end main method } // end class
Output:
$ javac TSPUsingMST.java $ java TSPUsingMST Yankton SD, Wisconsin Dells WI Yakima WA, Williston ND Worcester MA, Wilmington DE Wisconsin Dells WI, Youngstown OH Winston-Salem NC, Winchester VA Winnipeg MB, Yankton SD Winchester VA, Wilmington DE Wilmington NC, Winston-Salem NC Wilmington DE, Williamsport PA Williston ND, Winnipeg MB Williamsport PA, Youngstown OH Williamson WV, Winston-Salem NC Wichita Falls TX, Wichita KS Wichita KS, Yankton SD The cost of the minimum spanning tree is 5461
Related posts:
Hướng dẫn Java Design Pattern – Template Method
Guide to Spring Cloud Kubernetes
Working with Tree Model Nodes in Jackson
Convert String to int or Integer in Java
Redirect to Different Pages after Login with Spring Security
Hướng dẫn sử dụng Printing Service trong Java
Xử lý ngoại lệ đối với trường hợp ghi đè phương thức trong java
Java Program to Implement Stack using Linked List
Reactive Flow with MongoDB, Kotlin, and Spring WebFlux
Anonymous Classes in Java
Difference Between Wait and Sleep in Java
HttpClient 4 – Follow Redirects for POST
Jackson Date
Hướng dẫn Java Design Pattern – MVC
Guide to java.util.Formatter
Java Program to Implement Hash Tables with Quadratic Probing
Java Program to Implement Suffix Tree
Show Hibernate/JPA SQL Statements from Spring Boot
Hướng dẫn sử dụng Java String, StringBuffer và StringBuilder
Java Program to Implement Disjoint Sets
Autoboxing và Unboxing trong Java
Finding Max/Min of a List or Collection
Quick Intro to Spring Cloud Configuration
Java Program to Use Dynamic Programming to Solve Approximate String Matching
Java Program to Implement Levenshtein Distance Computing Algorithm
A Quick Guide to Using Keycloak with Spring Boot
Getting Started with Custom Deserialization in Jackson
Phương thức forEach() trong java 8
Serialization và Deserialization trong java
Spring Boot - Tomcat Port Number
Java Program to Implement Dijkstra’s Algorithm using Queue
Spring 5 Functional Bean Registration