Java Program to Implement ScapeGoat Tree

This is a Java Program to implement ScapeGoat Tree. A scapegoat tree is a self-balancing binary search tree which provides worst-case O(log n) lookup time, and O(log n) amortized insertion and deletion time.

Here is the source code of the Java program to implement ScapeGoat tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

/*
 * Java Program to Implement ScapeGoat Tree
 */
 
import java.util.Scanner;    
 
/* Class SGTNode */
class SGTNode    
{
    SGTNode right, left, parent;
    int value;
 
    /* Constructor */
    public SGTNode(int val)
    {
        value = val;
    }
}
 
/* Class ScapeGoatTree */
class ScapeGoatTree
{
    private SGTNode root;
    private int n, q;
 
    /* Constructor */    
    public ScapeGoatTree()
    {
        root = null;
        // size = 0
        n = 0;        
    }
    /* Function to check if tree is empty */
    public boolean isEmpty()
    {
        return root == null;
    }
    /* Function to clear  tree */
    public void makeEmpty()
    {
        root = null;
        n = 0;
    }    
    /* Function to count number of nodes recursively */
    private int size(SGTNode r)
    {
        if (r == null)
            return 0;
        else
        {
            int l = 1;
            l += size(r.left);
            l += size(r.right);
            return l;
        }
    }
    /* Functions to search for an element */
    public boolean search(int val)
    {
        return search(root, val);
    }
    /* Function to search for an element recursively */
    private boolean search(SGTNode r, int val)
    {
        boolean found = false;
        while ((r != null) && !found)
        {
            int rval = r.value;
            if (val < rval)
                r = r.left;
            else if (val > rval)
                r = r.right;
            else
            {
                found = true;
                break;
            }
            found = search(r, val);
        }
        return found;
    }
    /* Function to return current size of tree */   
    public int size() 
    {
        return n;
    }
    /* Function for inorder traversal */
    public void inorder()
    {
        inorder(root);
    }
    private void inorder(SGTNode r)
    {
        if (r != null)
        {
            inorder(r.left);
            System.out.print(r.value +" ");
            inorder(r.right);
        }
    }
    /* Function for preorder traversal */
    public void preorder()
    {
        preorder(root);
    }
    private void preorder(SGTNode r)
    {
        if (r != null)
        {
            System.out.print(r.value +" ");
            preorder(r.left);             
            preorder(r.right);
        }
    }
    /* Function for postorder traversal */
    public void postorder()
    {
        postorder(root);
    }
    private void postorder(SGTNode r)
    {
        if (r != null)
        {
            postorder(r.left);             
            postorder(r.right);
            System.out.print(r.value +" ");
        }
    }     
    private static final int log32(int q) 
    {
        final double log23 = 2.4663034623764317;
        return (int)Math.ceil(log23*Math.log(q));
    }
    /* Function to insert an element */
    public boolean add(int x) 
    {
        /* first do basic insertion keeping track of depth */
        SGTNode u = new SGTNode(x);
        int d = addWithDepth(u);
        if (d > log32(q)) {
            /* depth exceeded, find scapegoat */
            SGTNode w = u.parent;
            while (3*size(w) <= 2*size(w.parent))
                w = w.parent;
            rebuild(w.parent);
        }
        return d >= 0;
    }
    /* Function to rebuild tree from node u */
    protected void rebuild(SGTNode u) 
    {
        int ns = size(u);
        SGTNode p = u.parent;
        SGTNode[] a = new SGTNode[ns];
        packIntoArray(u, a, 0);
        if (p == null) 
        {
            root = buildBalanced(a, 0, ns);
            root.parent = null;
        } 
        else if (p.right == u) 
        {
            p.right = buildBalanced(a, 0, ns);
            p.right.parent = p;
        } 
        else 
        {
            p.left = buildBalanced(a, 0, ns);
            p.left.parent = p;
        }
    }
    /* Function to packIntoArray */
    protected int packIntoArray(SGTNode u, SGTNode[] a, int i) 
    {
        if (u == null) 
        {
            return i;
        }
        i = packIntoArray(u.left, a, i);
        a[i++] = u;
        return packIntoArray(u.right, a, i);
    }
    /* Function to build balanced nodes */
    protected SGTNode buildBalanced(SGTNode[] a, int i, int ns) 
    {
        if (ns == 0)
            return null;
        int m = ns / 2;
        a[i + m].left = buildBalanced(a, i, m);
        if (a[i + m].left != null)
            a[i + m].left.parent = a[i + m];
        a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1);
        if (a[i + m].right != null)
            a[i + m].right.parent = a[i + m];
        return a[i + m];
    }
    /* Function add with depth */
    public int addWithDepth(SGTNode u) 
    {
        SGTNode w = root;
        if (w == null) 
        {
            root = u;
            n++; 
            q++;
            return 0;
        }
        boolean done = false;
        int d = 0;
        do {
 
            if (u.value < w.value) 
            {
                if (w.left == null) 
                {
                    w.left = u;
                    u.parent = w;
                    done = true;
                } 
                else 
                {
                    w = w.left;
                }
            } 
            else if (u.value > w.value) 
            {
                if (w.right == null) 
                {
                    w.right = u;
                    u.parent = w;
                    done = true;
                }
                w = w.right;
            } 
            else 
            {
                return -1;
            }
            d++;
        } while (!done);
        n++; 
        q++;
        return d;
    }
}
 
public class ScapeGoatTreeTest
{
    public static void main(String[] args)
    {                 
        Scanner scan = new Scanner(System.in);
        /* Creating object of ScapeGoatTree */
        ScapeGoatTree sgt = new ScapeGoatTree(); 
        System.out.println("ScapeGoat Tree Test\n");          
        char ch;
        /*  Perform tree operations  */
        do    
        {
            System.out.println("\nScapeGoat Tree Operations\n");
            System.out.println("1. insert ");
            System.out.println("2. count nodes");
            System.out.println("3. search"); 
            System.out.println("4. check empty");
            System.out.println("5. make empty");
 
            int choice = scan.nextInt();            
            switch (choice)
            {
            case 1 : 
                System.out.println("Enter integer element to insert");
                sgt.add( scan.nextInt() );                     
                break;                                                    
            case 2 : 
                System.out.println("Nodes = "+ sgt.size());
                break; 
            case 3 : 
                System.out.println("Enter integer element to search");
                System.out.println("Search result : "+ sgt.search( scan.nextInt() ));
                break;                           
            case 4 :  
                System.out.println("Empty status = "+ sgt.isEmpty());
                break;
            case 5 :  
                System.out.println("\nTree cleared\n");
                sgt.makeEmpty();
                break;             
            default : 
                System.out.println("Wrong Entry \n ");
                break;           
            }
            /*  Display tree  */ 
            System.out.print("\nPost order : ");
            sgt.postorder();
            System.out.print("\nPre order : ");
            sgt.preorder();
            System.out.print("\nIn order : ");
            sgt.inorder();
 
            System.out.println("\nDo you want to continue (Type y or n) \n");
            ch = scan.next().charAt(0);                        
        } while (ch == 'Y'|| ch == 'y');               
    }
}
ScapeGoat Tree Test
 
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
1
Enter integer element to insert
34
 
Post order : 34
Pre order : 34
In order : 34
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
1
Enter integer element to insert
67
 
Post order : 67 34
Pre order : 34 67
In order : 34 67
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
1
Enter integer element to insert
11
 
Post order : 11 67 34
Pre order : 34 11 67
In order : 11 34 67
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
1
Enter integer element to insert
24
 
Post order : 24 11 67 34
Pre order : 34 11 24 67
In order : 11 24 34 67
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
1
Enter integer element to insert
6
 
Post order : 6 24 11 67 34
Pre order : 34 11 6 24 67
In order : 6 11 24 34 67
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
1
Enter integer element to insert
97
 
Post order : 6 24 11 97 67 34
Pre order : 34 11 6 24 67 97
In order : 6 11 24 34 67 97
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
1
Enter integer element to insert
12
 
Post order : 6 12 24 11 97 67 34
Pre order : 34 11 6 24 12 67 97
In order : 6 11 12 24 34 67 97
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
1
Enter integer element to insert
57
 
Post order : 6 12 24 11 57 97 67 34
Pre order : 34 11 6 24 12 67 57 97
In order : 6 11 12 24 34 57 67 97
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
2
Nodes = 8
 
Post order : 6 12 24 11 57 97 67 34
Pre order : 34 11 6 24 12 67 57 97
In order : 6 11 12 24 34 57 67 97
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
3
Enter integer element to search
57
Search result : true
 
Post order : 6 12 24 11 57 97 67 34
Pre order : 34 11 6 24 12 67 57 97
In order : 6 11 12 24 34 57 67 97
Do you want to continue (Type y or n)
 
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
5
 
Tree cleared
 
 
Post order :
Pre order :
In order :
Do you want to continue (Type y or n)
 
y
 
ScapeGoat Tree Operations
 
1. insert
2. count nodes
3. search
4. check empty
5. make empty
4
Empty status = true
 
Post order :
Pre order :
In order :
Do you want to continue (Type y or n)
 
n

Related posts:

Java Program to Implement Binomial Heap
Spring Boot: Customize Whitelabel Error Page
Java Program to Decode a Message Encoded Using Playfair Cipher
Hướng dẫn Java Design Pattern – Singleton
Guide to the Volatile Keyword in Java
Java Program to Implement Threaded Binary Tree
Check if there is mail waiting
Java Program to Check if a Given Graph Contain Hamiltonian Cycle or Not
Java Program to Perform String Matching Using String Library
Handle EML file with JavaMail
Java Program to Solve any Linear Equation in One Variable
Tính đa hình (Polymorphism) trong Java
Working With Maps Using Streams
Java Program to Implement Heap
Java Program to Check if a Given Binary Tree is an AVL Tree or Not
Guava – Join and Split Collections
How to Implement Caching using Adonis.js 5
Java Program to Implement Vector API
Java Program to Find the Minimum Element of a Rotated Sorted Array using Binary Search approach
Java Program to Implement Quick Sort with Given Complexity Constraint
Java Program to Use the Bellman-Ford Algorithm to Find the Shortest Path
Java Program to Find Second Smallest of n Elements with Given Complexity Constraint
Java Program to Implement Control Table
Java Program to Implement ConcurrentHashMap API
Java Program to Implement Merge Sort Algorithm on Linked List
A Guide to JPA with Spring
Java Program to Compute Cross Product of Two Vectors
Giới thiệu Aspect Oriented Programming (AOP)
Annotation trong Java 8
Binary Numbers in Java
Spring Boot - Database Handling
Guide to CopyOnWriteArrayList