This is a Java Program to implement ScapeGoat Tree. A scapegoat tree is a self-balancing binary search tree which provides worst-case O(log n) lookup time, and O(log n) amortized insertion and deletion time.
Here is the source code of the Java program to implement ScapeGoat tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/* * Java Program to Implement ScapeGoat Tree */ import java.util.Scanner; /* Class SGTNode */ class SGTNode { SGTNode right, left, parent; int value; /* Constructor */ public SGTNode(int val) { value = val; } } /* Class ScapeGoatTree */ class ScapeGoatTree { private SGTNode root; private int n, q; /* Constructor */ public ScapeGoatTree() { root = null; // size = 0 n = 0; } /* Function to check if tree is empty */ public boolean isEmpty() { return root == null; } /* Function to clear tree */ public void makeEmpty() { root = null; n = 0; } /* Function to count number of nodes recursively */ private int size(SGTNode r) { if (r == null) return 0; else { int l = 1; l += size(r.left); l += size(r.right); return l; } } /* Functions to search for an element */ public boolean search(int val) { return search(root, val); } /* Function to search for an element recursively */ private boolean search(SGTNode r, int val) { boolean found = false; while ((r != null) && !found) { int rval = r.value; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /* Function to return current size of tree */ public int size() { return n; } /* Function for inorder traversal */ public void inorder() { inorder(root); } private void inorder(SGTNode r) { if (r != null) { inorder(r.left); System.out.print(r.value +" "); inorder(r.right); } } /* Function for preorder traversal */ public void preorder() { preorder(root); } private void preorder(SGTNode r) { if (r != null) { System.out.print(r.value +" "); preorder(r.left); preorder(r.right); } } /* Function for postorder traversal */ public void postorder() { postorder(root); } private void postorder(SGTNode r) { if (r != null) { postorder(r.left); postorder(r.right); System.out.print(r.value +" "); } } private static final int log32(int q) { final double log23 = 2.4663034623764317; return (int)Math.ceil(log23*Math.log(q)); } /* Function to insert an element */ public boolean add(int x) { /* first do basic insertion keeping track of depth */ SGTNode u = new SGTNode(x); int d = addWithDepth(u); if (d > log32(q)) { /* depth exceeded, find scapegoat */ SGTNode w = u.parent; while (3*size(w) <= 2*size(w.parent)) w = w.parent; rebuild(w.parent); } return d >= 0; } /* Function to rebuild tree from node u */ protected void rebuild(SGTNode u) { int ns = size(u); SGTNode p = u.parent; SGTNode[] a = new SGTNode[ns]; packIntoArray(u, a, 0); if (p == null) { root = buildBalanced(a, 0, ns); root.parent = null; } else if (p.right == u) { p.right = buildBalanced(a, 0, ns); p.right.parent = p; } else { p.left = buildBalanced(a, 0, ns); p.left.parent = p; } } /* Function to packIntoArray */ protected int packIntoArray(SGTNode u, SGTNode[] a, int i) { if (u == null) { return i; } i = packIntoArray(u.left, a, i); a[i++] = u; return packIntoArray(u.right, a, i); } /* Function to build balanced nodes */ protected SGTNode buildBalanced(SGTNode[] a, int i, int ns) { if (ns == 0) return null; int m = ns / 2; a[i + m].left = buildBalanced(a, i, m); if (a[i + m].left != null) a[i + m].left.parent = a[i + m]; a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1); if (a[i + m].right != null) a[i + m].right.parent = a[i + m]; return a[i + m]; } /* Function add with depth */ public int addWithDepth(SGTNode u) { SGTNode w = root; if (w == null) { root = u; n++; q++; return 0; } boolean done = false; int d = 0; do { if (u.value < w.value) { if (w.left == null) { w.left = u; u.parent = w; done = true; } else { w = w.left; } } else if (u.value > w.value) { if (w.right == null) { w.right = u; u.parent = w; done = true; } w = w.right; } else { return -1; } d++; } while (!done); n++; q++; return d; } } public class ScapeGoatTreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /* Creating object of ScapeGoatTree */ ScapeGoatTree sgt = new ScapeGoatTree(); System.out.println("ScapeGoat Tree Test\n"); char ch; /* Perform tree operations */ do { System.out.println("\nScapeGoat Tree Operations\n"); System.out.println("1. insert "); System.out.println("2. count nodes"); System.out.println("3. search"); System.out.println("4. check empty"); System.out.println("5. make empty"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); sgt.add( scan.nextInt() ); break; case 2 : System.out.println("Nodes = "+ sgt.size()); break; case 3 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ sgt.search( scan.nextInt() )); break; case 4 : System.out.println("Empty status = "+ sgt.isEmpty()); break; case 5 : System.out.println("\nTree cleared\n"); sgt.makeEmpty(); break; default : System.out.println("Wrong Entry \n "); break; } /* Display tree */ System.out.print("\nPost order : "); sgt.postorder(); System.out.print("\nPre order : "); sgt.preorder(); System.out.print("\nIn order : "); sgt.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
ScapeGoat Tree Test ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 34 Post order : 34 Pre order : 34 In order : 34 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 67 Post order : 67 34 Pre order : 34 67 In order : 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 11 Post order : 11 67 34 Pre order : 34 11 67 In order : 11 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 24 Post order : 24 11 67 34 Pre order : 34 11 24 67 In order : 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 6 Post order : 6 24 11 67 34 Pre order : 34 11 6 24 67 In order : 6 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 97 Post order : 6 24 11 97 67 34 Pre order : 34 11 6 24 67 97 In order : 6 11 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 12 Post order : 6 12 24 11 97 67 34 Pre order : 34 11 6 24 12 67 97 In order : 6 11 12 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 57 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 2 Nodes = 8 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 3 Enter integer element to search 57 Search result : true Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 5 Tree cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Format ZonedDateTime to String
Using Java Assertions
Circular Dependencies in Spring
Introduction to Spring Method Security
Java 8 StringJoiner
Spring Data MongoDB – Indexes, Annotations and Converters
A Guide to Java HashMap
Guide to System.gc()
Java Program to Implement ArrayDeque API
Java Program to Construct an Expression Tree for an Infix Expression
Giới thiệu JDBC Connection Pool
Java InputStream to String
Introduction to Eclipse Collections
Java Program to Implement Trie
Java Program to Implement SynchronosQueue API
Spring MVC Async vs Spring WebFlux
Java Program to Perform Naive String Matching
Java Program to Implement Flood Fill Algorithm
Java Program to Implement Double Ended Queue
Java Program to Implement Fenwick Tree
Immutable Map Implementations in Java
Lớp HashMap trong Java
Lập trình đa luồng với CompletableFuture trong Java 8
Java Program to Construct K-D Tree for 2 Dimensional Data
Java Program to Implement Quick Sort with Given Complexity Constraint
OAuth2 for a Spring REST API – Handle the Refresh Token in Angular
A Guide to JUnit 5 Extensions
Java Program to Implement Splay Tree
Spring Boot Integration Testing with Embedded MongoDB
Hướng dẫn sử dụng Java String, StringBuffer và StringBuilder
Spring Security Login Page with React
Chương trình Java đầu tiên