This is a Java Program to implement ScapeGoat Tree. A scapegoat tree is a self-balancing binary search tree which provides worst-case O(log n) lookup time, and O(log n) amortized insertion and deletion time.
Here is the source code of the Java program to implement ScapeGoat tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/*
* Java Program to Implement ScapeGoat Tree
*/
import java.util.Scanner;
/* Class SGTNode */
class SGTNode
{
SGTNode right, left, parent;
int value;
/* Constructor */
public SGTNode(int val)
{
value = val;
}
}
/* Class ScapeGoatTree */
class ScapeGoatTree
{
private SGTNode root;
private int n, q;
/* Constructor */
public ScapeGoatTree()
{
root = null;
// size = 0
n = 0;
}
/* Function to check if tree is empty */
public boolean isEmpty()
{
return root == null;
}
/* Function to clear tree */
public void makeEmpty()
{
root = null;
n = 0;
}
/* Function to count number of nodes recursively */
private int size(SGTNode r)
{
if (r == null)
return 0;
else
{
int l = 1;
l += size(r.left);
l += size(r.right);
return l;
}
}
/* Functions to search for an element */
public boolean search(int val)
{
return search(root, val);
}
/* Function to search for an element recursively */
private boolean search(SGTNode r, int val)
{
boolean found = false;
while ((r != null) && !found)
{
int rval = r.value;
if (val < rval)
r = r.left;
else if (val > rval)
r = r.right;
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
/* Function to return current size of tree */
public int size()
{
return n;
}
/* Function for inorder traversal */
public void inorder()
{
inorder(root);
}
private void inorder(SGTNode r)
{
if (r != null)
{
inorder(r.left);
System.out.print(r.value +" ");
inorder(r.right);
}
}
/* Function for preorder traversal */
public void preorder()
{
preorder(root);
}
private void preorder(SGTNode r)
{
if (r != null)
{
System.out.print(r.value +" ");
preorder(r.left);
preorder(r.right);
}
}
/* Function for postorder traversal */
public void postorder()
{
postorder(root);
}
private void postorder(SGTNode r)
{
if (r != null)
{
postorder(r.left);
postorder(r.right);
System.out.print(r.value +" ");
}
}
private static final int log32(int q)
{
final double log23 = 2.4663034623764317;
return (int)Math.ceil(log23*Math.log(q));
}
/* Function to insert an element */
public boolean add(int x)
{
/* first do basic insertion keeping track of depth */
SGTNode u = new SGTNode(x);
int d = addWithDepth(u);
if (d > log32(q)) {
/* depth exceeded, find scapegoat */
SGTNode w = u.parent;
while (3*size(w) <= 2*size(w.parent))
w = w.parent;
rebuild(w.parent);
}
return d >= 0;
}
/* Function to rebuild tree from node u */
protected void rebuild(SGTNode u)
{
int ns = size(u);
SGTNode p = u.parent;
SGTNode[] a = new SGTNode[ns];
packIntoArray(u, a, 0);
if (p == null)
{
root = buildBalanced(a, 0, ns);
root.parent = null;
}
else if (p.right == u)
{
p.right = buildBalanced(a, 0, ns);
p.right.parent = p;
}
else
{
p.left = buildBalanced(a, 0, ns);
p.left.parent = p;
}
}
/* Function to packIntoArray */
protected int packIntoArray(SGTNode u, SGTNode[] a, int i)
{
if (u == null)
{
return i;
}
i = packIntoArray(u.left, a, i);
a[i++] = u;
return packIntoArray(u.right, a, i);
}
/* Function to build balanced nodes */
protected SGTNode buildBalanced(SGTNode[] a, int i, int ns)
{
if (ns == 0)
return null;
int m = ns / 2;
a[i + m].left = buildBalanced(a, i, m);
if (a[i + m].left != null)
a[i + m].left.parent = a[i + m];
a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1);
if (a[i + m].right != null)
a[i + m].right.parent = a[i + m];
return a[i + m];
}
/* Function add with depth */
public int addWithDepth(SGTNode u)
{
SGTNode w = root;
if (w == null)
{
root = u;
n++;
q++;
return 0;
}
boolean done = false;
int d = 0;
do {
if (u.value < w.value)
{
if (w.left == null)
{
w.left = u;
u.parent = w;
done = true;
}
else
{
w = w.left;
}
}
else if (u.value > w.value)
{
if (w.right == null)
{
w.right = u;
u.parent = w;
done = true;
}
w = w.right;
}
else
{
return -1;
}
d++;
} while (!done);
n++;
q++;
return d;
}
}
public class ScapeGoatTreeTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/* Creating object of ScapeGoatTree */
ScapeGoatTree sgt = new ScapeGoatTree();
System.out.println("ScapeGoat Tree Test\n");
char ch;
/* Perform tree operations */
do
{
System.out.println("\nScapeGoat Tree Operations\n");
System.out.println("1. insert ");
System.out.println("2. count nodes");
System.out.println("3. search");
System.out.println("4. check empty");
System.out.println("5. make empty");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
sgt.add( scan.nextInt() );
break;
case 2 :
System.out.println("Nodes = "+ sgt.size());
break;
case 3 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ sgt.search( scan.nextInt() ));
break;
case 4 :
System.out.println("Empty status = "+ sgt.isEmpty());
break;
case 5 :
System.out.println("\nTree cleared\n");
sgt.makeEmpty();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/* Display tree */
System.out.print("\nPost order : ");
sgt.postorder();
System.out.print("\nPre order : ");
sgt.preorder();
System.out.print("\nIn order : ");
sgt.inorder();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
ScapeGoat Tree Test ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 34 Post order : 34 Pre order : 34 In order : 34 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 67 Post order : 67 34 Pre order : 34 67 In order : 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 11 Post order : 11 67 34 Pre order : 34 11 67 In order : 11 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 24 Post order : 24 11 67 34 Pre order : 34 11 24 67 In order : 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 6 Post order : 6 24 11 67 34 Pre order : 34 11 6 24 67 In order : 6 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 97 Post order : 6 24 11 97 67 34 Pre order : 34 11 6 24 67 97 In order : 6 11 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 12 Post order : 6 12 24 11 97 67 34 Pre order : 34 11 6 24 12 67 97 In order : 6 11 12 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 57 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 2 Nodes = 8 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 3 Enter integer element to search 57 Search result : true Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 5 Tree cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java Program to Check Whether it is Weakly Connected or Strongly Connected for a Directed Graph
Login For a Spring Web App – Error Handling and Localization
Java Program to Perform Postorder Recursive Traversal of a Given Binary Tree
Introduction to Spring Cloud CLI
Exception Handling in Java
Spring JDBC
Remove All Occurrences of a Specific Value from a List
Java Program to Implement Euclid GCD Algorithm
A Guide to System.exit()
Java 8 and Infinite Streams
Quick Guide to Spring MVC with Velocity
Connect through a Proxy
Introduction to the Functional Web Framework in Spring 5
New Stream Collectors in Java 9
Java Program to Check whether Graph is a Bipartite using BFS
Logout in an OAuth Secured Application
Control the Session with Spring Security
DistinctBy in the Java Stream API
Java – Reader to Byte Array
Filtering and Transforming Collections in Guava
Spring Boot: Customize Whitelabel Error Page
A Custom Data Binder in Spring MVC
Performance Difference Between save() and saveAll() in Spring Data
Spring Cloud Series – The Gateway Pattern
Hướng dẫn Java Design Pattern – Chain of Responsibility
ETags for REST with Spring
Disable Spring Data Auto Configuration
Jackson – Unmarshall to Collection/Array
A Guide to Java HashMap
Java Timer
Java Program to Represent Graph Using Linked List
Java Program to Check the Connectivity of Graph Using DFS