This is a Java Program to implement Lloyd’s Algorithm. The LBG-algorithm or Lloyd’s algorithm allows clustering of vectors of any dimension. This is helpful for example for image classification when using the SIFT or SURF algorithms. It might be also useful if you want to cluster a large amount of points on a map.
Here is the source code of the Java Program to Implement Lloyd’s Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to implement Lloyd’s Algorithm
import java.util.ArrayList;
public class GenLloyd
{
protected double[][] samplePoints;
protected double[][] clusterPoints;
int[] pointApproxIndices;
int pointDimension = 0;
protected double epsilon = 0.0005;
protected double avgDistortion = 0.0;
/**
* Create Generalized Lloyd object with an array of sample points
*/
public GenLloyd(double[][] samplePoints)
{
this.setSamplePoints(samplePoints);
}
/**
* Return epsilon parameter (accuracy)
*/
public double getEpsilon()
{
return epsilon;
}
/**
* Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon
* < 0.1
*/
public void setEpsilon(double epsilon)
{
this.epsilon = epsilon;
}
/**
* Set array of sample points
*/
public void setSamplePoints(double[][] samplePoints)
{
if (samplePoints.length > 0)
{
this.samplePoints = samplePoints;
this.pointDimension = samplePoints[0].length;
}
}
/**
* Get array of sample points
*/
public double[][] getSamplePoints()
{
return samplePoints;
}
/**
* Get calculated cluster points. <numClusters> cluster points will be
* calculated and returned
*/
public double[][] getClusterPoints(int numClusters)
{
this.calcClusters(numClusters);
return clusterPoints;
}
protected void calcClusters(int numClusters)
{
// initialize with first cluster
clusterPoints = new double[1][pointDimension];
double[] newClusterPoint = initializeClusterPoint(samplePoints);
clusterPoints[0] = newClusterPoint;
if (numClusters > 1)
{
// calculate initial average distortion
avgDistortion = 0.0;
for (double[] samplePoint : samplePoints)
{
avgDistortion += calcDist(samplePoint, newClusterPoint);
}
avgDistortion /= (double) (samplePoints.length * pointDimension);
// set up array of point approximization indices
pointApproxIndices = new int[samplePoints.length];
// split the clusters
int i = 1;
do
{
i = splitClusters();
} while (i < numClusters);
}
}
protected int splitClusters()
{
int newClusterPointSize = 2;
if (clusterPoints.length != 1)
{
newClusterPointSize = clusterPoints.length * 2;
}
// split clusters
double[][] newClusterPoints = new double[newClusterPointSize][pointDimension];
int newClusterPointIdx = 0;
for (double[] clusterPoint : clusterPoints)
{
newClusterPoints[newClusterPointIdx] = createNewClusterPoint(
clusterPoint, -1);
newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint(
clusterPoint, +1);
newClusterPointIdx += 2;
}
clusterPoints = newClusterPoints;
// iterate to approximate cluster points
// int iteration = 0;
double curAvgDistortion = 0.0;
do
{
curAvgDistortion = avgDistortion;
// find the min values
for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
{
double minDist = Double.MAX_VALUE;
for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++)
{
double newMinDist = calcDist(samplePoints[pointIdx],
clusterPoints[clusterPointIdx]);
if (newMinDist < minDist)
{
minDist = newMinDist;
pointApproxIndices[pointIdx] = clusterPointIdx;
}
}
}
// update codebook
for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++)
{
double[] newClusterPoint = new double[pointDimension];
int num = 0;
for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
{
if (pointApproxIndices[pointIdx] == clusterPointIdx)
{
addPointValues(newClusterPoint, samplePoints[pointIdx]);
num++;
}
}
if (num > 0)
{
multiplyPointValues(newClusterPoint, 1.0 / (double) num);
clusterPoints[clusterPointIdx] = newClusterPoint;
}
}
// update average distortion
avgDistortion = 0.0;
for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
{
avgDistortion += calcDist(samplePoints[pointIdx],
clusterPoints[pointApproxIndices[pointIdx]]);
}
avgDistortion /= (double) (samplePoints.length * pointDimension);
} while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon);
return clusterPoints.length;
}
protected double[] initializeClusterPoint(double[][] pointsInCluster)
{
// calculate point sum
double[] clusterPoint = new double[pointDimension];
for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++)
{
addPointValues(clusterPoint, pointsInCluster[numPoint]);
}
// calculate average
multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length);
return clusterPoint;
}
protected double[] createNewClusterPoint(double[] clusterPoint,
int epsilonFactor)
{
double[] newClusterPoint = new double[pointDimension];
addPointValues(newClusterPoint, clusterPoint);
multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor
* epsilon);
return newClusterPoint;
}
protected double calcDist(double[] v1, double[] v2)
{
double distSum = 0.0;
for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
{
double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]);
distSum += absDist * absDist;
}
return distSum;
}
protected void addPointValues(double[] v1, double[] v2)
{
for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
{
v1[pointIdx] += v2[pointIdx];
}
}
protected void multiplyPointValues(double[] v1, double f)
{
for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
{
v1[pointIdx] *= f;
}
}
public static void main(String[] args)
{
ArrayList<double[]> points = new ArrayList<double[]>();
// points.add(arrayOf(-1.5, -1.5));
points.add(arrayOf(-1.5, 2.0, 5.0));
points.add(arrayOf(-2.0, -2.0, 0.0));
points.add(arrayOf(1.0, 1.0, 2.0));
points.add(arrayOf(1.5, 1.5, 1.2));
points.add(arrayOf(1.0, 2.0, 5.6));
points.add(arrayOf(1.0, -2.0, -2.0));
points.add(arrayOf(1.0, -3.0, -2.0));
points.add(arrayOf(1.0, -2.5, -4.5));
GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2]));
double[][] results = gl.getClusterPoints(4);
for (double[] point : results)
{
System.out.println("Cluster " + point[0] + ", " + point[1] + ", "
+ point[2]);
}
}
private static double[] arrayOf(double x, double y, double z)
{
double[] a = new double[3];
a[0] = x;
a[1] = y;
a[2] = z;
return a;
}
}
Output:
$ javac GenLloyd.java $ java GenLloyd Cluster -2.0, -2.0, 0.0 Cluster 1.0, -2.5, -2.833333333333333 Cluster 1.25, 1.25, 1.6 Cluster -0.25, 2.0, 5.3
Related posts:
The Order of Tests in JUnit
Java Program to Implement Control Table
Java Program to Check if it is a Sparse Matrix
Custom Error Pages with Spring MVC
Java Program to Implement Strassen Algorithm
Java InputStream to String
Java Program to Implement Cartesian Tree
An Intro to Spring Cloud Contract
Java Program to Find Median of Elements where Elements are Stored in 2 Different Arrays
Bootstrap a Web Application with Spring 5
Spring Boot - Hystrix
Java Program to Implement Borwein Algorithm
Spring WebClient Filters
Java Program to Find the Minimum value of Binary Search Tree
Spring MVC Content Negotiation
Deploy a Spring Boot App to Azure
Tạo ứng dụng Java RESTful Client với thư viện OkHttp
Debug a JavaMail Program
Tính đóng gói (Encapsulation) trong java
Java Program to Use Above Below Primitive to Test Whether Two Lines Intersect
Java Program to Implement Coppersmith Freivald’s Algorithm
Consumer trong Java 8
Java Program to Find Strongly Connected Components in Graphs
Spring Security with Maven
Hướng dẫn Java Design Pattern – Proxy
Java Program to Implement Caesar Cypher
Creating a Custom Starter with Spring Boot
Spring Boot - Bootstrapping
HTTP Authentification and CGI/Servlet
Marker Interface trong Java
Java Program to Implement DelayQueue API
Java Program to Generate Random Hexadecimal Byte