This is a Java Program to implement 2D KD Tree and find nearest neighbor. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find the Nearest Neighbor Using K-D Tree Search. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find nearest neighbor using KD Tree implementation
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
class KDNode
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KDNode Parent;
KDNode Left;
KDNode Right;
public KDNode(double[] x0, int axis0)
{
x = new double[2];
axis = axis0;
for (int k = 0; k < 2; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KDNode FindParent(double[] x0)
{
KDNode parent = null;
KDNode next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KDNode Insert(double[] p)
{
//x = new double[2];
KDNode parent = FindParent(p);
if (equal(p, parent.x, 2) == true)
return null;
KDNode newNode = new KDNode(p, parent.axis + 1 < 2 ? parent.axis + 1
: 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KDTree
{
KDNode Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KDNode nearest_neighbour;
int KD_id;
int nList;
KDNode CheckedNodes[];
int checked_nodes;
KDNode List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KDTree(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KDNode[i];
CheckedNodes = new KDNode[i];
max_boundary = new boolean[2];
min_boundary = new boolean[2];
x_min = new double[2];
x_max = new double[2];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KDNode(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KDNode pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KDNode find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KDNode parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 2);
;
if (parent.equal(x, parent.x, 2) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KDNode node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KDNode node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 2; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KDNode search_parent(KDNode parent, double[] x)
{
for (int k = 0; k < 2; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KDNode search_root = parent;
while (parent != null && (n_boundary != 2 * 2))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
}
public class KDTNearest
{
public static void main(String args[]) throws IOException
{
BufferedReader in = new BufferedReader(new FileReader("input.txt"));
int numpoints = 5;
KDTree kdt = new KDTree(numpoints);
double x[] = new double[2];
x[0] = 2.1;
x[1] = 4.3;
kdt.add(x);
x[0] = 3.3;
x[1] = 1.5;
kdt.add(x);
x[0] = 4.7;
x[1] = 11.1;
kdt.add(x);
x[0] = 5.0;
x[1] = 12.3;
kdt.add(x);
x[0] = 5.1;
x[1] = 1.2;
kdt.add(x);
System.out
.println("Enter the co-ordinates of the point: (one after the other)");
InputStreamReader reader = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(reader);
double sx = Double.parseDouble(br.readLine());
double sy = Double.parseDouble(br.readLine());
double s[] = { sx, sy };
KDNode kdn = kdt.find_nearest(s);
System.out.println("The nearest neighbor is: ");
System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")");
in.close();
}
}
Output:
$ javac KDTNearest.java $ java KDTNearest Enter the co-ordinates of the point: (one after the other) 4.3 1.5 The nearest neighbor is: (5.1 , 1.2)
Related posts:
Một số tính năng mới về xử lý ngoại lệ trong Java 7
Java Program to Implement Ternary Search Tree
Java Program to Perform the Sorting Using Counting Sort
Java – Try with Resources
A Quick JUnit vs TestNG Comparison
Send an email using the SMTP protocol
New in Spring Security OAuth2 – Verify Claims
Chuyển đổi từ HashMap sang ArrayList
Java Program to Implement Fermat Primality Test Algorithm
Apache Commons Collections SetUtils
Java Program to Find the Median of two Sorted Arrays using Binary Search Approach
Spring Cloud Bus
Introduction to the Java NIO Selector
Java Program to Implement Solovay Strassen Primality Test Algorithm
A Guide to JUnit 5 Extensions
Java Program to Implement Knight’s Tour Problem
Shuffling Collections In Java
Simplify the DAO with Spring and Java Generics
Java Program to Implement Network Flow Problem
Check if there is mail waiting
Weak References in Java
Java – Delete a File
Filtering a Stream of Optionals in Java
Find the Registered Spring Security Filters
Spring Security Registration – Resend Verification Email
Java Program to Generate Random Hexadecimal Byte
Giới thiệu Aspect Oriented Programming (AOP)
Quản lý bộ nhớ trong Java với Heap Space vs Stack
Enum trong java
New Features in Java 14
Spring Boot - Runners
Java Program to Implement Nth Root Algorithm