Java Program to Find the Nearest Neighbor Using K-D Tree Search

This is a Java Program to implement 2D KD Tree and find nearest neighbor. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

Here is the source code of the Java Program to Find the Nearest Neighbor Using K-D Tree Search. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to find nearest neighbor using KD Tree implementation
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
 
class KDNode
{
    int axis;
    double[] x;
    int id;
    boolean checked;
    boolean orientation;
 
    KDNode Parent;
    KDNode Left;
    KDNode Right;
 
    public KDNode(double[] x0, int axis0)
    {
        x = new double[2];
        axis = axis0;
        for (int k = 0; k < 2; k++)
            x[k] = x0[k];
 
        Left = Right = Parent = null;
        checked = false;
        id = 0;
    }
 
    public KDNode FindParent(double[] x0)
    {
        KDNode parent = null;
        KDNode next = this;
        int split;
        while (next != null)
        {
            split = next.axis;
            parent = next;
            if (x0[split] > next.x[split])
                next = next.Right;
            else
                next = next.Left;
        }
        return parent;
    }
 
    public KDNode Insert(double[] p)
    {
        //x = new double[2];
        KDNode parent = FindParent(p);
        if (equal(p, parent.x, 2) == true)
            return null;
 
        KDNode newNode = new KDNode(p, parent.axis + 1 < 2 ? parent.axis + 1
                : 0);
        newNode.Parent = parent;
 
        if (p[parent.axis] > parent.x[parent.axis])
        {
            parent.Right = newNode;
            newNode.orientation = true; //
        } else
        {
            parent.Left = newNode;
            newNode.orientation = false; //
        }
 
        return newNode;
    }
 
    boolean equal(double[] x1, double[] x2, int dim)
    {
        for (int k = 0; k < dim; k++)
        {
            if (x1[k] != x2[k])
                return false;
        }
 
        return true;
    }
 
    double distance2(double[] x1, double[] x2, int dim)
    {
        double S = 0;
        for (int k = 0; k < dim; k++)
            S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
        return S;
    }
}
 
class KDTree
{
    KDNode Root;
 
    int TimeStart, TimeFinish;
    int CounterFreq;
 
    double d_min;
    KDNode nearest_neighbour;
 
    int KD_id;
 
    int nList;
 
    KDNode CheckedNodes[];
    int checked_nodes;
    KDNode List[];
 
    double x_min[], x_max[];
    boolean max_boundary[], min_boundary[];
    int n_boundary;
 
    public KDTree(int i)
    {
        Root = null;
        KD_id = 1;
        nList = 0;
        List = new KDNode[i];
        CheckedNodes = new KDNode[i];
        max_boundary = new boolean[2];
        min_boundary = new boolean[2];
        x_min = new double[2];
        x_max = new double[2];
    }
 
    public boolean add(double[] x)
    {
        if (nList >= 2000000 - 1)
            return false; // can't add more points
 
        if (Root == null)
        {
            Root = new KDNode(x, 0);
            Root.id = KD_id++;
            List[nList++] = Root;
        } else
        {
            KDNode pNode;
            if ((pNode = Root.Insert(x)) != null)
            {
                pNode.id = KD_id++;
                List[nList++] = pNode;
            }
        }
 
        return true;
    }
 
    public KDNode find_nearest(double[] x)
    {
        if (Root == null)
            return null;
 
        checked_nodes = 0;
        KDNode parent = Root.FindParent(x);
        nearest_neighbour = parent;
        d_min = Root.distance2(x, parent.x, 2);
        ;
 
        if (parent.equal(x, parent.x, 2) == true)
            return nearest_neighbour;
 
        search_parent(parent, x);
        uncheck();
 
        return nearest_neighbour;
    }
 
    public void check_subtree(KDNode node, double[] x)
    {
        if ((node == null) || node.checked)
            return;
 
        CheckedNodes[checked_nodes++] = node;
        node.checked = true;
        set_bounding_cube(node, x);
 
        int dim = node.axis;
        double d = node.x[dim] - x[dim];
 
        if (d * d > d_min)
        {
            if (node.x[dim] > x[dim])
                check_subtree(node.Left, x);
            else
                check_subtree(node.Right, x);
        } else
        {
            check_subtree(node.Left, x);
            check_subtree(node.Right, x);
        }
    }
 
    public void set_bounding_cube(KDNode node, double[] x)
    {
        if (node == null)
            return;
        int d = 0;
        double dx;
        for (int k = 0; k < 2; k++)
        {
            dx = node.x[k] - x[k];
            if (dx > 0)
            {
                dx *= dx;
                if (!max_boundary[k])
                {
                    if (dx > x_max[k])
                        x_max[k] = dx;
                    if (x_max[k] > d_min)
                    {
                        max_boundary[k] = true;
                        n_boundary++;
                    }
                }
            } else
            {
                dx *= dx;
                if (!min_boundary[k])
                {
                    if (dx > x_min[k])
                        x_min[k] = dx;
                    if (x_min[k] > d_min)
                    {
                        min_boundary[k] = true;
                        n_boundary++;
                    }
                }
            }
            d += dx;
            if (d > d_min)
                return;
 
        }
 
        if (d < d_min)
        {
            d_min = d;
            nearest_neighbour = node;
        }
    }
 
    public KDNode search_parent(KDNode parent, double[] x)
    {
        for (int k = 0; k < 2; k++)
        {
            x_min[k] = x_max[k] = 0;
            max_boundary[k] = min_boundary[k] = false; //
        }
        n_boundary = 0;
 
        KDNode search_root = parent;
        while (parent != null && (n_boundary != 2 * 2))
        {
            check_subtree(parent, x);
            search_root = parent;
            parent = parent.Parent;
        }
 
        return search_root;
    }
 
    public void uncheck()
    {
        for (int n = 0; n < checked_nodes; n++)
            CheckedNodes[n].checked = false;
    }
 
}
 
public class KDTNearest
{
 
    public static void main(String args[]) throws IOException
    {
        BufferedReader in = new BufferedReader(new FileReader("input.txt"));
        int numpoints = 5;
 
        KDTree kdt = new KDTree(numpoints);
        double x[] = new double[2];
 
        x[0] = 2.1;
        x[1] = 4.3;
        kdt.add(x);
 
        x[0] = 3.3;
        x[1] = 1.5;
        kdt.add(x);
 
        x[0] = 4.7;
        x[1] = 11.1;
        kdt.add(x);
 
        x[0] = 5.0;
        x[1] = 12.3;
        kdt.add(x);
 
        x[0] = 5.1;
        x[1] = 1.2;
        kdt.add(x);
 
        System.out
                .println("Enter the co-ordinates of the point: (one after the other)");
        InputStreamReader reader = new InputStreamReader(System.in);
        BufferedReader br = new BufferedReader(reader);
        double sx = Double.parseDouble(br.readLine());
        double sy = Double.parseDouble(br.readLine());
 
        double s[] = { sx, sy };
        KDNode kdn = kdt.find_nearest(s);
        System.out.println("The nearest neighbor is: ");
        System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")");
        in.close();
    }
}

Output:

$ javac KDTNearest.java
$ java KDTNearest
 
Enter the co-ordinates of the point: (one after the other)
4.3
1.5
The nearest neighbor is: 
(5.1 , 1.2)

Related posts:

Spring Boot - Cloud Configuration Server
Spring Boot Change Context Path
Java Program to Implement Binary Heap
Tránh lỗi NullPointerException trong Java như thế nào?
Inheritance and Composition (Is-a vs Has-a relationship) in Java
Inheritance with Jackson
Guide to Character Encoding
Java Program to Implement Radix Sort
Guide to UUID in Java
Java Program to Implement Cubic convergence 1/pi Algorithm
Spring Boot - Web Socket
Java Program to Find Nearest Neighbor for Dynamic Data Set
Java Program to Construct an Expression Tree for an Postfix Expression
Getting Started with Stream Processing with Spring Cloud Data Flow
Java Program to Implement Shell Sort
Java Program to Test Using DFS Whether a Directed Graph is Weakly Connected or Not
Java Program to Check Whether a Weak Link i.e. Articulation Vertex Exists in a Graph
Java Program to Implement Heap’s Algorithm for Permutation of N Numbers
Vòng lặp for, while, do-while trong Java
Java Program to implement Bi Directional Map
Java Program to Implement Hash Tables
ArrayList trong java
Java Program to Represent Graph Using Adjacency List
Hướng dẫn Java Design Pattern – Prototype
Java Program to Implement Wagner and Fisher Algorithm for online String Matching
Hướng dẫn Java Design Pattern – Template Method
Java Program to Implement CopyOnWriteArrayList API
Lập trình đa luồng trong Java (Java Multi-threading)
Cơ chế Upcasting và Downcasting trong java
Java Program to Implement Warshall Algorithm
Functional Interface trong Java 8
Java Program to Implement HashMap API