This is a Java Program to implement 2D KD Tree and find nearest neighbor. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find the Nearest Neighbor Using K-D Tree Search. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find nearest neighbor using KD Tree implementation import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; class KDNode { int axis; double[] x; int id; boolean checked; boolean orientation; KDNode Parent; KDNode Left; KDNode Right; public KDNode(double[] x0, int axis0) { x = new double[2]; axis = axis0; for (int k = 0; k < 2; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KDNode FindParent(double[] x0) { KDNode parent = null; KDNode next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KDNode Insert(double[] p) { //x = new double[2]; KDNode parent = FindParent(p); if (equal(p, parent.x, 2) == true) return null; KDNode newNode = new KDNode(p, parent.axis + 1 < 2 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KDTree { KDNode Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KDNode nearest_neighbour; int KD_id; int nList; KDNode CheckedNodes[]; int checked_nodes; KDNode List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KDTree(int i) { Root = null; KD_id = 1; nList = 0; List = new KDNode[i]; CheckedNodes = new KDNode[i]; max_boundary = new boolean[2]; min_boundary = new boolean[2]; x_min = new double[2]; x_max = new double[2]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KDNode(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KDNode pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KDNode find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KDNode parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 2); ; if (parent.equal(x, parent.x, 2) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KDNode node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KDNode node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 2; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KDNode search_parent(KDNode parent, double[] x) { for (int k = 0; k < 2; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KDNode search_root = parent; while (parent != null && (n_boundary != 2 * 2)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } } public class KDTNearest { public static void main(String args[]) throws IOException { BufferedReader in = new BufferedReader(new FileReader("input.txt")); int numpoints = 5; KDTree kdt = new KDTree(numpoints); double x[] = new double[2]; x[0] = 2.1; x[1] = 4.3; kdt.add(x); x[0] = 3.3; x[1] = 1.5; kdt.add(x); x[0] = 4.7; x[1] = 11.1; kdt.add(x); x[0] = 5.0; x[1] = 12.3; kdt.add(x); x[0] = 5.1; x[1] = 1.2; kdt.add(x); System.out .println("Enter the co-ordinates of the point: (one after the other)"); InputStreamReader reader = new InputStreamReader(System.in); BufferedReader br = new BufferedReader(reader); double sx = Double.parseDouble(br.readLine()); double sy = Double.parseDouble(br.readLine()); double s[] = { sx, sy }; KDNode kdn = kdt.find_nearest(s); System.out.println("The nearest neighbor is: "); System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")"); in.close(); } }
Output:
$ javac KDTNearest.java $ java KDTNearest Enter the co-ordinates of the point: (one after the other) 4.3 1.5 The nearest neighbor is: (5.1 , 1.2)
Related posts:
Using a Custom Spring MVC’s Handler Interceptor to Manage Sessions
Java Program to Implement ArrayDeque API
How to Manually Authenticate User with Spring Security
Introduction to the Java ArrayDeque
Array to String Conversions
Java Program to Implement Ternary Tree
Custom Error Pages with Spring MVC
Comparing Dates in Java
Java Program to Implement Fibonacci Heap
Hướng dẫn sử dụng biểu thức chính quy (Regular Expression) trong Java
Java Program to Find the Peak Element of an Array O(n) time (Naive Method)
Java String Conversions
Các kiểu dữ liệu trong java
Spring @RequestMapping New Shortcut Annotations
Spring REST API + OAuth2 + Angular
TreeSet và sử dụng Comparable, Comparator trong java
A Guide to ConcurrentMap
A Guide to System.exit()
Guava Collections Cookbook
New in Spring Security OAuth2 – Verify Claims
A Guide to Spring Boot Admin
How to Get All Spring-Managed Beans?
Generate Spring Boot REST Client with Swagger
Spring Boot - Interceptor
Jackson – Bidirectional Relationships
Java Program to Show the Duality Transformation of Line and Point
Spring Boot - Rest Controller Unit Test
Java Program to Apply Above-Below-on Test to Find the Position of a Point with respect to a Line
Giới thiệu Aspect Oriented Programming (AOP)
Class Loaders in Java
How to Read a File in Java
Hướng dẫn Java Design Pattern – Observer