This is a Java Program to implement 2D KD Tree and find nearest neighbor. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find the Nearest Neighbor Using K-D Tree Search. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find nearest neighbor using KD Tree implementation import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; class KDNode { int axis; double[] x; int id; boolean checked; boolean orientation; KDNode Parent; KDNode Left; KDNode Right; public KDNode(double[] x0, int axis0) { x = new double[2]; axis = axis0; for (int k = 0; k < 2; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KDNode FindParent(double[] x0) { KDNode parent = null; KDNode next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KDNode Insert(double[] p) { //x = new double[2]; KDNode parent = FindParent(p); if (equal(p, parent.x, 2) == true) return null; KDNode newNode = new KDNode(p, parent.axis + 1 < 2 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KDTree { KDNode Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KDNode nearest_neighbour; int KD_id; int nList; KDNode CheckedNodes[]; int checked_nodes; KDNode List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KDTree(int i) { Root = null; KD_id = 1; nList = 0; List = new KDNode[i]; CheckedNodes = new KDNode[i]; max_boundary = new boolean[2]; min_boundary = new boolean[2]; x_min = new double[2]; x_max = new double[2]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KDNode(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KDNode pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KDNode find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KDNode parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 2); ; if (parent.equal(x, parent.x, 2) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KDNode node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KDNode node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 2; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KDNode search_parent(KDNode parent, double[] x) { for (int k = 0; k < 2; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KDNode search_root = parent; while (parent != null && (n_boundary != 2 * 2)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } } public class KDTNearest { public static void main(String args[]) throws IOException { BufferedReader in = new BufferedReader(new FileReader("input.txt")); int numpoints = 5; KDTree kdt = new KDTree(numpoints); double x[] = new double[2]; x[0] = 2.1; x[1] = 4.3; kdt.add(x); x[0] = 3.3; x[1] = 1.5; kdt.add(x); x[0] = 4.7; x[1] = 11.1; kdt.add(x); x[0] = 5.0; x[1] = 12.3; kdt.add(x); x[0] = 5.1; x[1] = 1.2; kdt.add(x); System.out .println("Enter the co-ordinates of the point: (one after the other)"); InputStreamReader reader = new InputStreamReader(System.in); BufferedReader br = new BufferedReader(reader); double sx = Double.parseDouble(br.readLine()); double sy = Double.parseDouble(br.readLine()); double s[] = { sx, sy }; KDNode kdn = kdt.find_nearest(s); System.out.println("The nearest neighbor is: "); System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")"); in.close(); } }
Output:
$ javac KDTNearest.java $ java KDTNearest Enter the co-ordinates of the point: (one after the other) 4.3 1.5 The nearest neighbor is: (5.1 , 1.2)
Related posts:
The Modulo Operator in Java
Java Program to Implement RenderingHints API
Autoboxing và Unboxing trong Java
Spring Boot - Scheduling
Java Program to Find kth Smallest Element by the Method of Partitioning the Array
Spring Boot - Logging
Spring REST API + OAuth2 + Angular
Java Program to Represent Graph Using Incidence List
Send an email using the SMTP protocol
Compare Two JSON Objects with Jackson
Spring MVC Setup with Kotlin
Một số nguyên tắc, định luật trong lập trình
Java Program to Generate Date Between Given Range
Spring Data Java 8 Support
Introduction to Spring Cloud CLI
Giới thiệu Swagger – Công cụ document cho RESTfull APIs
Mảng (Array) trong Java
Create a Custom Exception in Java
Using JWT with Spring Security OAuth (legacy stack)
Ép kiểu trong Java (Type casting)
Spring 5 and Servlet 4 – The PushBuilder
Generating Random Numbers in a Range in Java
Uploading MultipartFile with Spring RestTemplate
Java Program to Implement Hash Tables with Quadratic Probing
Spring Security Authentication Provider
Java Byte Array to InputStream
Quick Guide on Loading Initial Data with Spring Boot
Spring Data – CrudRepository save() Method
Spring Boot - OAuth2 with JWT
Guide to Mustache with Spring Boot
Check If a File or Directory Exists in Java
Spring Boot - Cloud Configuration Server