This is a Java Program to implement 2D KD Tree and find nearest neighbor. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find the Nearest Neighbor Using K-D Tree Search. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find nearest neighbor using KD Tree implementation
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
class KDNode
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KDNode Parent;
KDNode Left;
KDNode Right;
public KDNode(double[] x0, int axis0)
{
x = new double[2];
axis = axis0;
for (int k = 0; k < 2; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KDNode FindParent(double[] x0)
{
KDNode parent = null;
KDNode next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KDNode Insert(double[] p)
{
//x = new double[2];
KDNode parent = FindParent(p);
if (equal(p, parent.x, 2) == true)
return null;
KDNode newNode = new KDNode(p, parent.axis + 1 < 2 ? parent.axis + 1
: 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KDTree
{
KDNode Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KDNode nearest_neighbour;
int KD_id;
int nList;
KDNode CheckedNodes[];
int checked_nodes;
KDNode List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KDTree(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KDNode[i];
CheckedNodes = new KDNode[i];
max_boundary = new boolean[2];
min_boundary = new boolean[2];
x_min = new double[2];
x_max = new double[2];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KDNode(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KDNode pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KDNode find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KDNode parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 2);
;
if (parent.equal(x, parent.x, 2) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KDNode node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KDNode node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 2; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KDNode search_parent(KDNode parent, double[] x)
{
for (int k = 0; k < 2; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KDNode search_root = parent;
while (parent != null && (n_boundary != 2 * 2))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
}
public class KDTNearest
{
public static void main(String args[]) throws IOException
{
BufferedReader in = new BufferedReader(new FileReader("input.txt"));
int numpoints = 5;
KDTree kdt = new KDTree(numpoints);
double x[] = new double[2];
x[0] = 2.1;
x[1] = 4.3;
kdt.add(x);
x[0] = 3.3;
x[1] = 1.5;
kdt.add(x);
x[0] = 4.7;
x[1] = 11.1;
kdt.add(x);
x[0] = 5.0;
x[1] = 12.3;
kdt.add(x);
x[0] = 5.1;
x[1] = 1.2;
kdt.add(x);
System.out
.println("Enter the co-ordinates of the point: (one after the other)");
InputStreamReader reader = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(reader);
double sx = Double.parseDouble(br.readLine());
double sy = Double.parseDouble(br.readLine());
double s[] = { sx, sy };
KDNode kdn = kdt.find_nearest(s);
System.out.println("The nearest neighbor is: ");
System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")");
in.close();
}
}
Output:
$ javac KDTNearest.java $ java KDTNearest Enter the co-ordinates of the point: (one after the other) 4.3 1.5 The nearest neighbor is: (5.1 , 1.2)
Related posts:
Check if there is mail waiting
Java Program to Implement Cubic convergence 1/pi Algorithm
Most commonly used String methods in Java
Java Program to Implement Range Tree
Java Program to Compute the Area of a Triangle Using Determinants
Java Program to Implement SynchronosQueue API
Guide to Guava Multimap
Java Program to Find the Median of two Sorted Arrays using Binary Search Approach
Java Program to Perform Searching Using Self-Organizing Lists
Java Program to add two large numbers using Linked List
What is Thread-Safety and How to Achieve it?
Understanding Memory Leaks in Java
Encode a String to UTF-8 in Java
Tránh lỗi ConcurrentModificationException trong Java như thế nào?
Truyền giá trị và tham chiếu trong java
Display Auto-Configuration Report in Spring Boot
Java Program to Find the Connected Components of an UnDirected Graph
Spring Security – security none, filters none, access permitAll
How to Use if/else Logic in Java 8 Streams
HashSet trong Java hoạt động như thế nào?
Inheritance with Jackson
Map Serialization and Deserialization with Jackson
Java Program to Perform Left Rotation on a Binary Search Tree
Sắp xếp trong Java 8
Guide to BufferedReader
Java Program to Implement Stack
Java – Get Random Item/Element From a List
Hướng dẫn sử dụng Printing Service trong Java
REST Web service: Tạo ứng dụng Java RESTful Client với Jersey Client 2.x
Removing all Nulls from a List in Java
Iterating over Enum Values in Java
The Order of Tests in JUnit