This is a Java Program to implement 2D KD Tree and find nearest neighbor. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find the Nearest Neighbor Using K-D Tree Search. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find nearest neighbor using KD Tree implementation import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; class KDNode { int axis; double[] x; int id; boolean checked; boolean orientation; KDNode Parent; KDNode Left; KDNode Right; public KDNode(double[] x0, int axis0) { x = new double[2]; axis = axis0; for (int k = 0; k < 2; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KDNode FindParent(double[] x0) { KDNode parent = null; KDNode next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KDNode Insert(double[] p) { //x = new double[2]; KDNode parent = FindParent(p); if (equal(p, parent.x, 2) == true) return null; KDNode newNode = new KDNode(p, parent.axis + 1 < 2 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KDTree { KDNode Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KDNode nearest_neighbour; int KD_id; int nList; KDNode CheckedNodes[]; int checked_nodes; KDNode List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KDTree(int i) { Root = null; KD_id = 1; nList = 0; List = new KDNode[i]; CheckedNodes = new KDNode[i]; max_boundary = new boolean[2]; min_boundary = new boolean[2]; x_min = new double[2]; x_max = new double[2]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KDNode(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KDNode pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KDNode find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KDNode parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 2); ; if (parent.equal(x, parent.x, 2) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KDNode node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KDNode node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 2; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KDNode search_parent(KDNode parent, double[] x) { for (int k = 0; k < 2; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KDNode search_root = parent; while (parent != null && (n_boundary != 2 * 2)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } } public class KDTNearest { public static void main(String args[]) throws IOException { BufferedReader in = new BufferedReader(new FileReader("input.txt")); int numpoints = 5; KDTree kdt = new KDTree(numpoints); double x[] = new double[2]; x[0] = 2.1; x[1] = 4.3; kdt.add(x); x[0] = 3.3; x[1] = 1.5; kdt.add(x); x[0] = 4.7; x[1] = 11.1; kdt.add(x); x[0] = 5.0; x[1] = 12.3; kdt.add(x); x[0] = 5.1; x[1] = 1.2; kdt.add(x); System.out .println("Enter the co-ordinates of the point: (one after the other)"); InputStreamReader reader = new InputStreamReader(System.in); BufferedReader br = new BufferedReader(reader); double sx = Double.parseDouble(br.readLine()); double sy = Double.parseDouble(br.readLine()); double s[] = { sx, sy }; KDNode kdn = kdt.find_nearest(s); System.out.println("The nearest neighbor is: "); System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")"); in.close(); } }
Output:
$ javac KDTNearest.java $ java KDTNearest Enter the co-ordinates of the point: (one after the other) 4.3 1.5 The nearest neighbor is: (5.1 , 1.2)
Related posts:
A Guide to Spring Boot Admin
Removing Elements from Java Collections
Hướng dẫn Java Design Pattern – State
Từ khóa this và super trong Java
Xây dựng ứng dụng Client-Server với Socket trong Java
Getting a File’s Mime Type in Java
Java 9 Stream API Improvements
Guide to Guava Table
RestTemplate Post Request with JSON
Java Program to Implement Shell Sort
So sánh HashMap và Hashtable trong Java
Show Hibernate/JPA SQL Statements from Spring Boot
Summing Numbers with Java Streams
Java Program to Perform Encoding of a Message Using Matrix Multiplication
DynamoDB in a Spring Boot Application Using Spring Data
Java Program to Implement LinkedTransferQueue API
Java String Conversions
Java Program to Implement Sorted Doubly Linked List
Java Program to Perform Finite State Automaton based Search
Guide to ThreadLocalRandom in Java
StringBuilder vs StringBuffer in Java
Use Liquibase to Safely Evolve Your Database Schema
Java Program to Emulate N Dice Roller
Apache Commons Collections Bag
Java Program to Implement ArrayBlockingQueue API
Send an email using the SMTP protocol
Immutable Objects in Java
Java – File to Reader
Tổng quan về ngôn ngữ lập trình java
How to Find an Element in a List with Java
Netflix Archaius with Various Database Configurations
Guide to the Fork/Join Framework in Java