Deep Learning for Natural Language Processing – Jason Brownlee

We are awash with text, from books, papers, blogs, tweets, news, and increasingly text from spoken utterances. Every day, I get questions asking how to develop machine learning models for text data. Working with text is hard as it requires drawing upon knowledge from diverse domains such as linguistics, machine learning, statistical natural language processing, and these days, deep learning.

I have done my best to write blog posts to answer frequently asked questions on the topic and decided to pull together my best knowledge on the matter into this book. I designed this book to teach you step-by-step how to bring modern deep learning methods to your natural language processing projects. I chose the programming language, programming libraries, and tutorial topics to give you the skills you need.

Python is the go-to language for applied machine learning and deep learning, both in terms of demand from employers and employees. This is not least because it could be a renaissance for machine learning tools. I have focused on showing you how to use the best of breed Python tools for natural language processing such as Gensim and NLTK, and even a little scikit-learn. Key to getting results is speed of development, and for this reason, we use the Keras deep learning library as you can define, train, and use complex deep learning models with just a few lines of Python code.

There are three key areas that you must know when working with text:

  • How to clean text. This includes loading, analyzing, filtering and cleaning tasks required prior to modeling.
  • How to represent text. This includes the classical bag-of-words model and the modern and powerful distributed representation in word embeddings.
  • How to generate text. This includes the range of most interesting problems, such as image captioning and translation.

These key topics provide the backbone for the book and the tutorials you will work through. I believe that after completing this book, you will have the skills that you need to both work through your own natural language processing projects and bring modern deep learning methods to bare.

Related posts:

Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Deep Learning with PyTorch - Vishnu Subramanian
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Intelligent Projects Using Python - Santanu Pattanayak
Python Data Structures and Algorithms - Benjamin Baka
Deep Learning with Python - Francois Chollet
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Python Machine Learning Eqution Reference - Sebastian Raschka
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning with Python - Francois Cholletf
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Pattern recognition and machine learning - Christopher M.Bishop
Machine Learning with spark and python - Michael Bowles
Introduction to the Math of Neural Networks - Jeff Heaton
Fundamentals of Deep Learning - Nikhil Bubuma
Deep Learning in Python - LazyProgrammer
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Machine Learning with Python for everyone - Mark E.Fenner
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Deep Learning with Theano - Christopher Bourez
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Data Science and Big Data Analytics - EMC Education Services