Deep Learning for Natural Language Processing – Jason Brownlee

We are awash with text, from books, papers, blogs, tweets, news, and increasingly text from spoken utterances. Every day, I get questions asking how to develop machine learning models for text data. Working with text is hard as it requires drawing upon knowledge from diverse domains such as linguistics, machine learning, statistical natural language processing, and these days, deep learning.

I have done my best to write blog posts to answer frequently asked questions on the topic and decided to pull together my best knowledge on the matter into this book. I designed this book to teach you step-by-step how to bring modern deep learning methods to your natural language processing projects. I chose the programming language, programming libraries, and tutorial topics to give you the skills you need.

Python is the go-to language for applied machine learning and deep learning, both in terms of demand from employers and employees. This is not least because it could be a renaissance for machine learning tools. I have focused on showing you how to use the best of breed Python tools for natural language processing such as Gensim and NLTK, and even a little scikit-learn. Key to getting results is speed of development, and for this reason, we use the Keras deep learning library as you can define, train, and use complex deep learning models with just a few lines of Python code.

There are three key areas that you must know when working with text:

  • How to clean text. This includes loading, analyzing, filtering and cleaning tasks required prior to modeling.
  • How to represent text. This includes the classical bag-of-words model and the modern and powerful distributed representation in word embeddings.
  • How to generate text. This includes the range of most interesting problems, such as image captioning and translation.

These key topics provide the backbone for the book and the tutorials you will work through. I believe that after completing this book, you will have the skills that you need to both work through your own natural language processing projects and bring modern deep learning methods to bare.

Related posts:

Fundamentals of Deep Learning - Nikhil Bubuma
Introduction to Deep Learning - Eugene Charniak
Python Deep Learning Cookbook - Indra den Bakker
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Learn Keras for Deep Neural Networks - Jojo Moolayil
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Machine Learning with Python for everyone - Mark E.Fenner
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Pattern recognition and machine learning - Christopher M.Bishop
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning with PyTorch - Vishnu Subramanian
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Neural Networks and Deep Learning - Charu C.Aggarwal
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning with Python - Francois Cholletf
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Intelligent Projects Using Python - Santanu Pattanayak
Artificial Intelligence by example - Denis Rothman
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster