Deep Learning for Natural Language Processing – Jason Brownlee

We are awash with text, from books, papers, blogs, tweets, news, and increasingly text from spoken utterances. Every day, I get questions asking how to develop machine learning models for text data. Working with text is hard as it requires drawing upon knowledge from diverse domains such as linguistics, machine learning, statistical natural language processing, and these days, deep learning.

I have done my best to write blog posts to answer frequently asked questions on the topic and decided to pull together my best knowledge on the matter into this book. I designed this book to teach you step-by-step how to bring modern deep learning methods to your natural language processing projects. I chose the programming language, programming libraries, and tutorial topics to give you the skills you need.

Python is the go-to language for applied machine learning and deep learning, both in terms of demand from employers and employees. This is not least because it could be a renaissance for machine learning tools. I have focused on showing you how to use the best of breed Python tools for natural language processing such as Gensim and NLTK, and even a little scikit-learn. Key to getting results is speed of development, and for this reason, we use the Keras deep learning library as you can define, train, and use complex deep learning models with just a few lines of Python code.

There are three key areas that you must know when working with text:

  • How to clean text. This includes loading, analyzing, filtering and cleaning tasks required prior to modeling.
  • How to represent text. This includes the classical bag-of-words model and the modern and powerful distributed representation in word embeddings.
  • How to generate text. This includes the range of most interesting problems, such as image captioning and translation.

These key topics provide the backbone for the book and the tutorials you will work through. I believe that after completing this book, you will have the skills that you need to both work through your own natural language processing projects and bring modern deep learning methods to bare.

Related posts:

Deep Learning in Python - LazyProgrammer
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Coding Theory - Algorithms, Architectures and Application
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Java Deep Learning Essentials - Yusuke Sugomori
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Artificial Intelligence by example - Denis Rothman
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Introduction to the Math of Neural Networks - Jeff Heaton
Python Machine Learning Eqution Reference - Sebastian Raschka
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Medical Image Segmentation Using Artificial Neural Networks
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
R Deep Learning Essentials - Dr. Joshua F.Wiley
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Fundamentals of Deep Learning - Nikhil Bubuma
Machine Learning with spark and python - Michael Bowles
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Deep Learning with Theano - Christopher Bourez
Deep Learning with Keras - Antonio Gulli & Sujit Pal
The hundred-page Machine Learning Book - Andriy Burkov
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Introduction to Deep Learning - Eugene Charniak
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Deep Learning with Hadoop - Dipayan Dev