Generative Deep Learning – Teaching Machines to Paint, Write, Compose and Play – David Foster

An undeniable part of the human condition is our ability to create. Since our earliest days as cave people, we have sought opportunities to generate original and beautiful creations. For early man, this took the form of cave paintings depicting wild animals and abstract patterns, created with pigments placed carefully and methodically onto rock. The Romantic Era gave us the mastery of Tchaikovsky symphonies, with their ability to inspire feelings of triumph and tragedy through sound waves, woven together to form beautiful melodies and harmonies. And in recent times, we have
found ourselves rushing to bookshops at midnight to buy stories about a fictional wizard, because the combination of letters creates a narrative that wills us to turn the page and find out what happens to our hero.

It is therefore not surprising that humanity has started to ask the ultimate question of creativity: can we create something that is in itself creative?
This is the question that generative modeling aims to answer. With recent advances in methodology and technology, we are now able to build machines that can paint origi‐nal artwork in a given style, write coherent paragraphs with long-term structure, compose music that is pleasant to listen to, and develop winning strategies for com‐plex games by generating imaginary future scenarios. This is just the start of a gener‐ative revolution that will leave us with no choice but to find answers to some of the biggest questions about the mechanics of creativity, and ultimately, what it means to be human. In short, there has never been a better time to learn about generative modeling—so let’s get started!

Related posts:

Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Data Science and Big Data Analytics - EMC Education Services
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Amazon Machine Learning Developer Guild Version Latest
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
The hundred-page Machine Learning Book - Andriy Burkov
Neural Networks - A visual introduction for beginners - Michael Taylor
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Pattern recognition and machine learning - Christopher M.Bishop
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Neural Networks and Deep Learning - Charu C.Aggarwal
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Deep Learning in Python - LazyProgrammer
R Deep Learning Essentials - Dr. Joshua F.Wiley
Intelligent Projects Using Python - Santanu Pattanayak
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey