Python Deep Learning Cookbook – Indra den Bakker

Deep learning is revolutionizing a wide range of industries. For many applications, deep learning has proven to outperform humans by making faster and more accurate predictions. This book provides a top- down and bottom-up approach to demonstrate deep learning solutions to real-world problems in different areas. These applications include computer vision, natural language processing, time series, and robotics.

What this book covers


Chapter 1, Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks, includes information and recipes related to environments and GPU computing. It is a must-read for readers who have issues in setting up their environment on different platforms.

Chapter 2, Feed-Forward Neural Networks, provides a collection of recipes related to feed-forward neural networks and forms the basis for the other chapters. The focus of this chapter is to provide solutions to common implementation problems for different network topologies.

Chapter 3, Convolutional Neural Networks, focuses on convolutional neural networks and their application in computer vision. It provides recipes on techniques and optimizations used in CNNs.

Chapter 4, Recurrent Neural Networks, provides a collection of recipes related to recurrent neural networks. These include LSTM networks and GRUs. The focus of this chapter is to provide solutions to common implementation problems for recurrent neural networks.

Chapter 5, Reinforcement Learning, covers recipes for reinforcement learning with neural networks. The recipes in this chapter introduce the concepts of deep reinforcement learning in a single-agent world.

Chapter 6, Generative Adversarial Networks, provides a collection of recipes related to unsupervised learning problems. These include generative adversarial networks for image generation and super resolution.

Chapter 7, Computer Vision, contains recipes related to processing data encoded as images, including video frames. Classic techniques of processing image data using Python will be provided, along with best- of-class solutions for detection, classification, and segmentation.

Chapter 8, Natural Language Processing, contains recipes related to textual data processing. This includes recipes related to textual feature representation and processing, including word embeddings and text data storage.

Chapter 9, Speech Recognition and Video Analysis, covers recipes related to stream data processing. This includes audio, video, and frame sequences

Chapter 10, Time Series and Structured Data, provides recipes related to number crunching. This includes sequences and time series.

Chapter 11, Game Playing Agents and Robotics, focuses on state-of-the-art deep learning research applications. This includes recipes related to game- playing agents in a multi-agent environment (simulations) and autonomous vehicles.

Chapter 12, Hyperparameter Selection, Tuning, and Neural Network Learning, illustrates recipes on the many aspects involved in the learning process of a neural network. The overall objective of the recipes is to provide very neat and specific tricks to boost network performance.

Chapter 13, Network Internals, covers the internals of a neural network. This includes tensor decomposition, weight initialization, topology storage, bottleneck features, and corresponding embedding.

Chapter 14, Pretrained Models, covers popular deep learning models such as VGG-16 and Inception V4.

Related posts:

Deep Learning with Python - Francois Chollet
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Python Program to Display Calendar
Python bytes()
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Python globals()
Python Program to Reverse a Number
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Python Closures
Python Dictionary pop()
Python Operator Overloading
Python Program to Check if a Key is Already Present in a Dictionary
Python Set clear()
Python Program to Count the Occurrence of an Item in a List
Python Program to Find Factorial of Number Using Recursion
Python Program to Delete an Element From a Dictionary
Python Program to Find ASCII Value of Character
Python Set intersection()
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Python Program to Merge Mails
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Python if...else Statement
Python Set isdisjoint()
Python memoryview()
Python Program to Count the Number of Digits Present In a Number
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Python Program to Find the Size (Resolution) of a Image
Python String swapcase()
Python Dictionary
Pro Deep Learning with TensorFlow - Santunu Pattanayak