Medical Image Segmentation Using Artificial Neural Networks

Segmentation of tissues and structures from medical images is the first step in many image analysis applications developed for medical diagnosis. Development of treatment plans and evaluation of disease progression are other applications. These applications stem from the fact that diseases affect specific tissues or structures, lead to loss, atrophy (volume loss), and abnormalities. Consequently, an accurate, reliable, and automatic segmentation of these tissues and structures can improve diagnosis and treatment of diseases. Manual segmentation, although prone to rater drift and bias, is usually accurate but is impractical for large datasets because it is tedious and time consuming. Automatic segmentation methods can be useful for clinical applications if they have: 1) ability to segment like an expert; 2) excellent performance for diverse datasets; and 3) reasonable processing speed.

Artificial Neural Networks (ANNs) have been developed for a wide range of applications such as function approximation, feature extraction, optimization, and classification. In particular, they have been developed for image enhancement, segmentation, registration, feature extraction, and object recognition. Among these, image segmentation is more important as it is a critical step for high-level processing such as object recognition. Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Hopfield, Cellular, and Pulse-Coupled neural networks have been used for image segmentation. These networks can be categorized into feed-forward (associative) and feedback (auto-associative) networks. MLP, Self-Organized Map (SOM), and RBF neural networks belong to the feed-forward networks while Hopfield, Cellular, and Pulse-Coupled neural networks belong to the feedback networks.

This chapter is organized as follows. Section 2 explains methods that benefit from feedback networks such as Hopfield, Cellular, and Pulse-Coupled neural networks for image segmentation. In Section 3, we review the methods that use feedforward networks such as MLP and RBF neural networks. Then, we present our recent method. In this method, deep brain structures are segmented using Geometric Moment Invariants (GMIs) and MLP neural networks.

Related posts:

Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning with Python - Francois Cholletf
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Python Machine Learning - Sebastian Raschka
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Python Machine Learning Eqution Reference - Sebastian Raschka
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Coding Theory - Algorithms, Architectures and Application
Python Data Structures and Algorithms - Benjamin Baka
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Deep Learning for Natural Language Processing - Jason Brownlee
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Introduction to Scientific Programming with Python - Joakim Sundnes
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Deep Learning with PyTorch - Vishnu Subramanian
Deep Learning in Python - LazyProgrammer
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
R Deep Learning Essentials - Dr. Joshua F.Wiley
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Deep Learning and Neural Networks - Jeff Heaton
Machine Learning with spark and python - Michael Bowles
Introduction to the Math of Neural Networks - Jeff Heaton
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali