Medical Image Segmentation Using Artificial Neural Networks

Segmentation of tissues and structures from medical images is the first step in many image analysis applications developed for medical diagnosis. Development of treatment plans and evaluation of disease progression are other applications. These applications stem from the fact that diseases affect specific tissues or structures, lead to loss, atrophy (volume loss), and abnormalities. Consequently, an accurate, reliable, and automatic segmentation of these tissues and structures can improve diagnosis and treatment of diseases. Manual segmentation, although prone to rater drift and bias, is usually accurate but is impractical for large datasets because it is tedious and time consuming. Automatic segmentation methods can be useful for clinical applications if they have: 1) ability to segment like an expert; 2) excellent performance for diverse datasets; and 3) reasonable processing speed.

Artificial Neural Networks (ANNs) have been developed for a wide range of applications such as function approximation, feature extraction, optimization, and classification. In particular, they have been developed for image enhancement, segmentation, registration, feature extraction, and object recognition. Among these, image segmentation is more important as it is a critical step for high-level processing such as object recognition. Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Hopfield, Cellular, and Pulse-Coupled neural networks have been used for image segmentation. These networks can be categorized into feed-forward (associative) and feedback (auto-associative) networks. MLP, Self-Organized Map (SOM), and RBF neural networks belong to the feed-forward networks while Hopfield, Cellular, and Pulse-Coupled neural networks belong to the feedback networks.

This chapter is organized as follows. Section 2 explains methods that benefit from feedback networks such as Hopfield, Cellular, and Pulse-Coupled neural networks for image segmentation. In Section 3, we review the methods that use feedforward networks such as MLP and RBF neural networks. Then, we present our recent method. In this method, deep brain structures are segmented using Geometric Moment Invariants (GMIs) and MLP neural networks.

Related posts:

Neural Networks - A visual introduction for beginners - Michael Taylor
Machine Learning with Python for everyone - Mark E.Fenner
Deep Learning for Natural Language Processing - Jason Brownlee
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Neural Networks and Deep Learning - Charu C.Aggarwal
Deep Learning with PyTorch - Vishnu Subramanian
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Deep Learning with Theano - Christopher Bourez
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Python Deep Learning Cookbook - Indra den Bakker
Intelligent Projects Using Python - Santanu Pattanayak
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Pattern recognition and machine learning - Christopher M.Bishop
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf