Medical Image Segmentation Using Artificial Neural Networks

Segmentation of tissues and structures from medical images is the first step in many image analysis applications developed for medical diagnosis. Development of treatment plans and evaluation of disease progression are other applications. These applications stem from the fact that diseases affect specific tissues or structures, lead to loss, atrophy (volume loss), and abnormalities. Consequently, an accurate, reliable, and automatic segmentation of these tissues and structures can improve diagnosis and treatment of diseases. Manual segmentation, although prone to rater drift and bias, is usually accurate but is impractical for large datasets because it is tedious and time consuming. Automatic segmentation methods can be useful for clinical applications if they have: 1) ability to segment like an expert; 2) excellent performance for diverse datasets; and 3) reasonable processing speed.

Artificial Neural Networks (ANNs) have been developed for a wide range of applications such as function approximation, feature extraction, optimization, and classification. In particular, they have been developed for image enhancement, segmentation, registration, feature extraction, and object recognition. Among these, image segmentation is more important as it is a critical step for high-level processing such as object recognition. Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Hopfield, Cellular, and Pulse-Coupled neural networks have been used for image segmentation. These networks can be categorized into feed-forward (associative) and feedback (auto-associative) networks. MLP, Self-Organized Map (SOM), and RBF neural networks belong to the feed-forward networks while Hopfield, Cellular, and Pulse-Coupled neural networks belong to the feedback networks.

This chapter is organized as follows. Section 2 explains methods that benefit from feedback networks such as Hopfield, Cellular, and Pulse-Coupled neural networks for image segmentation. In Section 3, we review the methods that use feedforward networks such as MLP and RBF neural networks. Then, we present our recent method. In this method, deep brain structures are segmented using Geometric Moment Invariants (GMIs) and MLP neural networks.

Related posts:

Deep Learning and Neural Networks - Jeff Heaton
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Java Deep Learning Essentials - Yusuke Sugomori
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Introduction to the Math of Neural Networks - Jeff Heaton
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Neural Networks and Deep Learning - Charu C.Aggarwal
Data Science and Big Data Analytics - EMC Education Services
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Pattern recognition and machine learning - Christopher M.Bishop
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Python Deep Learning Cookbook - Indra den Bakker
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
The hundred-page Machine Learning Book - Andriy Burkov
Amazon Machine Learning Developer Guild Version Latest
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Machine Learning with spark and python - Michael Bowles
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Learn Keras for Deep Neural Networks - Jojo Moolayil
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Coding Theory - Algorithms, Architectures and Application