Introduction to Deep Learning Business Application for Developers – Armando Vieira & Bernardete Ribeiro

Deep learning has taken artificial intelligence by storm and has infiltrated almost every business application. Because almost all content and transactions are now being recorded in a digital format, a vast amount of data is available for exploration by machine learning algorithms. However, traditional machine learning techniques struggle to explore the intricate relationships presented in this so-called Big Data. This is particularly acute for unstructured data such as images, voice, and text.

Deep learning algorithms can cope with the challenges in analyzing this immense data flow because they have a very high learning capacity. Also, deep neural networks require little, if any, feature engineering and can be trained from end to end. Another advantage of the deep learning approach is that it relies on architectures that require minimal supervision (in other words, these architectures learn automatically from data and need little human intervention). These architectures are the so-called “unsupervised” of weakly supervised learning. Last, but not least, they can be trained as generative processes. Instead of mapping inputs to outputs, the algorithms learn how to generate both inputs and outputs from pure noise (i.e., generative adversarial networks). Imagine generating Van Gogh paintings, cars, or even human faces from a combination of a few hundred random numbers.

Google language translation services, Alexa voice recognition, and self-driving cars all run on deep learning algorithms. Other emergent areas are heavily dependent on deep learning, such as voice synthesis, drug discovery, and facial identification and recognition. Even creative areas, such as music, painting, and writing, are beginning to be disrupted by this technology. In fact, deep learning has the potential to create such a profound transformation in the economy that it will probably trigger one of the biggest revolutions that humanity has ever seen.

Related posts:

Deep Learning with Keras - Antonio Gulli & Sujit Pal
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning with Theano - Christopher Bourez
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Fundamentals of Deep Learning - Nikhil Bubuma
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Introduction to Deep Learning - Eugene Charniak
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Learn Keras for Deep Neural Networks - Jojo Moolayil
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Java Deep Learning Essentials - Yusuke Sugomori
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Neural Networks and Deep Learning - Charu C.Aggarwal
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python Data Structures and Algorithms - Benjamin Baka
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning with PyTorch - Vishnu Subramanian
Intelligent Projects Using Python - Santanu Pattanayak
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Deep Learning with Hadoop - Dipayan Dev
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Data Science and Big Data Analytics - EMC Education Services
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj