Let’s start by telling the truth: machines don’t learn. What a typical “learning machine” does, is finding a mathematical formula, which, when applied to a collection of inputs (called “training data”), produces the desired outputs. This mathematical formula also generates the correct outputs for most other inputs (distinct from the training data) on the condition that those inputs come from the same or a similar statistical distribution as the one the training data was drawn from. Why isn’t that learning? Because if you slightly distort the inputs, the output is very likely to become completely wrong. It’s not how learning in animals works. If you learned to play a video game by looking straight at the screen, you would still be a good player if someone rotates the screen slightly. A machine learning algorithm, if it was trained by “looking” straight at the screen, unless it was also trained to recognize rotation, will fail to play the game on a rotated screen. So why the name “machine learning” then? The reason, as is often the case, is marketing: Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence, coined the term in 1959 while at IBM. Similarly to how in the 2010s IBM tried to market the term “cognitive computing” to stand out from competition, in the 1960s, IBM used the new cool term “machine learning” to attract both clients and talented employees. As you can see, just like artificial intelligence is not intelligence, machine learning is not learning. However, machine learning is a universally recognized term that usually refers to the science and engineering of building machines capable of doing various useful things without being explicitly programmed to do so. So, the word “learning” in the term is used by analogy with the learning in animals rather than literally.
The hundred-page Machine Learning Book – Andriy Burkov
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Deep Learning with PyTorch - Vishnu Subramanian
Amazon Machine Learning Developer Guild Version Latest
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Machine Learning with spark and python - Michael Bowles
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Deep Learning with Theano - Christopher Bourez
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Introduction to the Math of Neural Networks - Jeff Heaton
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Python Data Structures and Algorithms - Benjamin Baka
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
An introduction to neural networks - Kevin Gurney & University of Sheffield
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Neural Networks - A visual introduction for beginners - Michael Taylor
Java Deep Learning Essentials - Yusuke Sugomori
Deep Learning and Neural Networks - Jeff Heaton
Coding Theory - Algorithms, Architectures and Application
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Artificial Intelligence by example - Denis Rothman
Deep Learning for Natural Language Processing - Jason Brownlee
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Introduction to Scientific Programming with Python - Joakim Sundnes
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili