Data Science and Big Data Analytics – EMC Education Services

Technological advances and the associated changes in practical daily life have produced a rapidly expanding “parallel universe” of new content, new data, and new information sources all around us. Regardless of how one defines it, the phenomenon of Big Data is ever more present, ever more pervasive, and ever more important. There is enormous value potential in Big Data: innovative insights, improved understanding of problems, and countless opportunities to predict—and even to shape—the future. Data Science is the principal means to discover and tap that potential. Data Science provides ways to deal with and benefit from Big Data: to see patterns, to discover relationships, and to make sense of stunningly varied images and information. Not everyone has studied statistical analysis at a deep level. People with advanced degrees in applied mathematics are not a commodity.

Relatively few organizations have committed resources to large collections of data gathered primarily for the purpose of exploratory analysis. And yet, while applying the practices of Data Science to Big Data is a valuable differentiating strategy at present, it will be a standard core competency in the not so distant future. How does an organization operationalize quickly to take advantage of this trend? We’ve created this book for that exact purpose. EMC Education Services has been listening to the industry and organizations, observing the multi-faceted transformation of the technology landscape, and doing direct research in order to create curriculum and content to help individuals and organizations transform themselves. For the domain of Data Science and Big Data Analytics, our educational strategy balances three things: people especially in the context of data science teams, processes such
as the analytic lifecycle approach presented in this book, and tools and technologies in this case with the emphasis on proven analytic tools. So let us help you capitalize on this new “parallel universe” that surrounds us. We invite you to learn about Data Science and Big Data Analytics through this book and hope it significantly accelerates your efforts in the transformational process.

Related posts:

An introduction to neural networks - Kevin Gurney & University of Sheffield
Introduction to Deep Learning - Eugene Charniak
Machine Learning with spark and python - Michael Bowles
Learn Keras for Deep Neural Networks - Jojo Moolayil
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Introduction to Scientific Programming with Python - Joakim Sundnes
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Coding Theory - Algorithms, Architectures and Application
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Machine Learning with Python for everyone - Mark E.Fenner
Deep Learning with Python - Francois Cholletf
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Python Deep Learning Cookbook - Indra den Bakker
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Deep Learning in Python - LazyProgrammer
Intelligent Projects Using Python - Santanu Pattanayak
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Deep Learning with PyTorch - Vishnu Subramanian
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron