Deep Learning Illustrated – A visual, Interactive Guide to Arficial Intelligence First Edition – Jon Krohn & Beyleveld Grand & Bassens Aglae

Five hundred and fifty million years ago, in the prehistoric Cambrian Period, the number of species on the planet began to surge (Figure 1.1). From the fossil record, there is evidence that this explosion was driven by the development of light detectors in the trilobite (Figure 1.2). A visual system, even a primitive one, bestows a delightful bounty of fresh capabilities. One can, as examples, spot food, foes, and friendly­looking mates at some distance. Other senses, like smell, enable animals to detect these as well, but not with the accuracy and light­speed pace of vision. Once the trilobite could see, the hypothesis goes, this set off an arms race that produced the Cambrian explosion: The trilobite’s prey, as well as its predators, themselves had to evolve to survive.

Related posts:

Java Deep Learning Essentials - Yusuke Sugomori
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Fundamentals of Deep Learning - Nikhil Bubuma
Introduction to Deep Learning - Eugene Charniak
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Deep Learning with PyTorch - Vishnu Subramanian
Medical Image Segmentation Using Artificial Neural Networks
Deep Learning with Python - Francois Chollet
Introduction to Scientific Programming with Python - Joakim Sundnes
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Neural Networks and Deep Learning - Charu C.Aggarwal
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
R Deep Learning Essentials - Dr. Joshua F.Wiley
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Machine Learning with spark and python - Michael Bowles
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Intelligent Projects Using Python - Santanu Pattanayak
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Deep Learning with Hadoop - Dipayan Dev
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Neural Networks - A visual introduction for beginners - Michael Taylor
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Pattern recognition and machine learning - Christopher M.Bishop
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson