Machine Learning – An Algorithmic Perspective second edition – Stephen Marsland

One of the most interesting features of machine learning is that it lies on the boundary of several different academic disciplines, principally computer science, statistics, mathematics, and engineering. This has been a problem as well as an asset, since these groups have traditionally not talked to each other very much. To make it even worse, the areas where machine learning methods can be applied vary even more widely, from finance to biology and medicine to physics and chemistry and beyond. Over the past ten years this inherent multi-disciplinarity has been embraced and understood, with many benefits for researchers in the field. This makes writing a textbook on machine learning rather tricky, since it is potentially of interest to people from a variety of different academic backgrounds.

In universities, machine learning is usually studied as part of artificial intelligence, which puts it firmly into computer science and—given the focus on algorithms—it certainly fits there. However, understanding why these algorithms work requires a certain amount of statistical and mathematical sophistication that is often missing from computer science undergraduates. When I started to look for a textbook that was suitable for classes of undergraduate computer science and engineering students, I discovered that the level of mathematical knowledge required was (unfortunately) rather in excess of that of the majority of the students. It seemed that there was a rather crucial gap, and it resulted in me writing the first draft of the student notes that have become this book. The emphasis is on the algorithms that make up the machine learning methods, and on nderstanding how and why these algorithms work. It is intended to be a practical book, with lots of programming examples and is supported by a website that makes available all of the code that was used to make the figures and examples in the book.

Related posts:

Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Pattern recognition and machine learning - Christopher M.Bishop
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Neural Networks - A visual introduction for beginners - Michael Taylor
Java Deep Learning Essentials - Yusuke Sugomori
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python Machine Learning - Sebastian Raschka
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
An introduction to neural networks - Kevin Gurney & University of Sheffield
Deep Learning in Python - LazyProgrammer
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Amazon Machine Learning Developer Guild Version Latest
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Introduction to the Math of Neural Networks - Jeff Heaton
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Intelligent Projects Using Python - Santanu Pattanayak
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Coding Theory - Algorithms, Architectures and Application
Machine Learning with spark and python - Michael Bowles
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Machine Learning with Python for everyone - Mark E.Fenner
Deep Learning with Theano - Christopher Bourez
Artificial Intelligence by example - Denis Rothman
Deep Learning with PyTorch - Vishnu Subramanian