Machine Learning – An Algorithmic Perspective second edition – Stephen Marsland

One of the most interesting features of machine learning is that it lies on the boundary of several different academic disciplines, principally computer science, statistics, mathematics, and engineering. This has been a problem as well as an asset, since these groups have traditionally not talked to each other very much. To make it even worse, the areas where machine learning methods can be applied vary even more widely, from finance to biology and medicine to physics and chemistry and beyond. Over the past ten years this inherent multi-disciplinarity has been embraced and understood, with many benefits for researchers in the field. This makes writing a textbook on machine learning rather tricky, since it is potentially of interest to people from a variety of different academic backgrounds.

In universities, machine learning is usually studied as part of artificial intelligence, which puts it firmly into computer science and—given the focus on algorithms—it certainly fits there. However, understanding why these algorithms work requires a certain amount of statistical and mathematical sophistication that is often missing from computer science undergraduates. When I started to look for a textbook that was suitable for classes of undergraduate computer science and engineering students, I discovered that the level of mathematical knowledge required was (unfortunately) rather in excess of that of the majority of the students. It seemed that there was a rather crucial gap, and it resulted in me writing the first draft of the student notes that have become this book. The emphasis is on the algorithms that make up the machine learning methods, and on nderstanding how and why these algorithms work. It is intended to be a practical book, with lots of programming examples and is supported by a website that makes available all of the code that was used to make the figures and examples in the book.

Related posts:

Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Machine Learning with spark and python - Michael Bowles
Fundamentals of Deep Learning - Nikhil Bubuma
Python Machine Learning - Sebastian Raschka
The hundred-page Machine Learning Book - Andriy Burkov
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Artificial Intelligence by example - Denis Rothman
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Introduction to Scientific Programming with Python - Joakim Sundnes
R Deep Learning Essentials - Dr. Joshua F.Wiley
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Python Deep Learning Cookbook - Indra den Bakker
Amazon Machine Learning Developer Guild Version Latest
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Deep Learning in Python - LazyProgrammer
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Introduction to the Math of Neural Networks - Jeff Heaton
An introduction to neural networks - Kevin Gurney & University of Sheffield
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Coding Theory - Algorithms, Architectures and Application
Neural Networks and Deep Learning - Charu C.Aggarwal
Python Machine Learning Eqution Reference - Sebastian Raschka