Machine Learning with spark and python – Michael Bowles

Extracting actionable information from data is changing the fabric of modern business in ways that directly affect programmers. One way is the demand for new programming skills. Market analysts predict demand for people with advanced statistics and machine learning skills will exceed supply by 140,000 to 190,000 by 2018. That means good salaries and a wide choice of interesting projects for those who have the requisite skills. Another development that affects programmers is progress in developing core tools for statistics and machine learning. This relieves programmers of the need to program intricate algorithms for themselves each time they want to try a new one. Among general-purpose programming languages, Python developers have been in the forefront, building state-of-the-art machine learning tools, but there is a gap between having the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a number of ways: online courses, a number of well-written books, and so on. Many of these give excellent surveys of machine learning algorithms and examples of their use, but because of the availability of so many different algorithms, it’s difficult to cover the details of their usage in a survey. This leaves a gap for the practitioner. The number of algorithms available requires making choices that a programmer new to machine learning might not be equipped to make until trying several, and it leaves the programmer to fill in the details of the usage of these algorithms in the context of overall problem formulation and solution.

Related posts:

Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Deep Learning in Python - LazyProgrammer
Data Science and Big Data Analytics - EMC Education Services
Medical Image Segmentation Using Artificial Neural Networks
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Deep Learning with Theano - Christopher Bourez
Python Data Structures and Algorithms - Benjamin Baka
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Artificial Intelligence by example - Denis Rothman
Machine Learning with Python for everyone - Mark E.Fenner
Fundamentals of Deep Learning - Nikhil Bubuma
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Neural Networks and Deep Learning - Charu C.Aggarwal
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Introduction to Scientific Programming with Python - Joakim Sundnes
Introduction to Deep Learning - Eugene Charniak
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Amazon Machine Learning Developer Guild Version Latest
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Java Deep Learning Essentials - Yusuke Sugomori
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David