Machine Learning with spark and python – Michael Bowles

Extracting actionable information from data is changing the fabric of modern business in ways that directly affect programmers. One way is the demand for new programming skills. Market analysts predict demand for people with advanced statistics and machine learning skills will exceed supply by 140,000 to 190,000 by 2018. That means good salaries and a wide choice of interesting projects for those who have the requisite skills. Another development that affects programmers is progress in developing core tools for statistics and machine learning. This relieves programmers of the need to program intricate algorithms for themselves each time they want to try a new one. Among general-purpose programming languages, Python developers have been in the forefront, building state-of-the-art machine learning tools, but there is a gap between having the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a number of ways: online courses, a number of well-written books, and so on. Many of these give excellent surveys of machine learning algorithms and examples of their use, but because of the availability of so many different algorithms, it’s difficult to cover the details of their usage in a survey. This leaves a gap for the practitioner. The number of algorithms available requires making choices that a programmer new to machine learning might not be equipped to make until trying several, and it leaves the programmer to fill in the details of the usage of these algorithms in the context of overall problem formulation and solution.

Related posts:

Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Java Deep Learning Essentials - Yusuke Sugomori
Neural Networks - A visual introduction for beginners - Michael Taylor
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Python Machine Learning Eqution Reference - Sebastian Raschka
Deep Learning in Python - LazyProgrammer
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Fundamentals of Deep Learning - Nikhil Bubuma
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Deep Learning with Python - Francois Chollet
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Coding Theory - Algorithms, Architectures and Application
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
The hundred-page Machine Learning Book - Andriy Burkov
Learn Keras for Deep Neural Networks - Jojo Moolayil
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Neural Networks and Deep Learning - Charu C.Aggarwal
Introduction to the Math of Neural Networks - Jeff Heaton
Artificial Intelligence by example - Denis Rothman
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Pattern recognition and machine learning - Christopher M.Bishop
Python Machine Learning - Sebastian Raschka
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...