Machine Learning with spark and python – Michael Bowles

Extracting actionable information from data is changing the fabric of modern business in ways that directly affect programmers. One way is the demand for new programming skills. Market analysts predict demand for people with advanced statistics and machine learning skills will exceed supply by 140,000 to 190,000 by 2018. That means good salaries and a wide choice of interesting projects for those who have the requisite skills. Another development that affects programmers is progress in developing core tools for statistics and machine learning. This relieves programmers of the need to program intricate algorithms for themselves each time they want to try a new one. Among general-purpose programming languages, Python developers have been in the forefront, building state-of-the-art machine learning tools, but there is a gap between having the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a number of ways: online courses, a number of well-written books, and so on. Many of these give excellent surveys of machine learning algorithms and examples of their use, but because of the availability of so many different algorithms, it’s difficult to cover the details of their usage in a survey. This leaves a gap for the practitioner. The number of algorithms available requires making choices that a programmer new to machine learning might not be equipped to make until trying several, and it leaves the programmer to fill in the details of the usage of these algorithms in the context of overall problem formulation and solution.

Related posts:

Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Neural Networks - A visual introduction for beginners - Michael Taylor
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Introduction to the Math of Neural Networks - Jeff Heaton
Python Data Structures and Algorithms - Benjamin Baka
Medical Image Segmentation Using Artificial Neural Networks
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Fundamentals of Deep Learning - Nikhil Bubuma
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Coding Theory - Algorithms, Architectures and Application
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Deep Learning with Hadoop - Dipayan Dev
Amazon Machine Learning Developer Guild Version Latest
R Deep Learning Essentials - Dr. Joshua F.Wiley
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
The hundred-page Machine Learning Book - Andriy Burkov
Pattern recognition and machine learning - Christopher M.Bishop
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Data Science and Big Data Analytics - EMC Education Services
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Learn Keras for Deep Neural Networks - Jojo Moolayil
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Intelligent Projects Using Python - Santanu Pattanayak
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach