Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Deep Learning with Hadoop - Dipayan Dev
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Neural Networks - A visual introduction for beginners - Michael Taylor
Machine Learning with spark and python - Michael Bowles
Machine Learning with Python for everyone - Mark E.Fenner
Introduction to Deep Learning - Eugene Charniak
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Java Deep Learning Essentials - Yusuke Sugomori
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Medical Image Segmentation Using Artificial Neural Networks
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Deep Learning and Neural Networks - Jeff Heaton
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Coding Theory - Algorithms, Architectures and Application
Learn Keras for Deep Neural Networks - Jojo Moolayil
Deep Learning with Theano - Christopher Bourez
Amazon Machine Learning Developer Guild Version Latest
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
R Deep Learning Essentials - Dr. Joshua F.Wiley
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Pattern recognition and machine learning - Christopher M.Bishop
Python Machine Learning Eqution Reference - Sebastian Raschka