Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Machine Learning with spark and python - Michael Bowles
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Introduction to Scientific Programming with Python - Joakim Sundnes
Python Machine Learning - Sebastian Raschka
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
An introduction to neural networks - Kevin Gurney & University of Sheffield
Java Deep Learning Essentials - Yusuke Sugomori
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Artificial Intelligence by example - Denis Rothman
Coding Theory - Algorithms, Architectures and Application
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python Machine Learning Eqution Reference - Sebastian Raschka
Neural Networks - A visual introduction for beginners - Michael Taylor
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
The hundred-page Machine Learning Book - Andriy Burkov
Pattern recognition and machine learning - Christopher M.Bishop
Deep Learning with PyTorch - Vishnu Subramanian
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Amazon Machine Learning Developer Guild Version Latest
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Machine Learning with Python for everyone - Mark E.Fenner
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Deep Learning with Theano - Christopher Bourez