Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Deep Learning in Python - LazyProgrammer
Deep Learning with PyTorch - Vishnu Subramanian
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Deep Learning and Neural Networks - Jeff Heaton
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Intelligent Projects Using Python - Santanu Pattanayak
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Python Machine Learning - Sebastian Raschka
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Python Machine Learning Eqution Reference - Sebastian Raschka
Deep Learning with Python - Francois Cholletf
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
R Deep Learning Essentials - Dr. Joshua F.Wiley
Deep Learning with Python - Francois Chollet
Machine Learning with spark and python - Michael Bowles
Python Data Structures and Algorithms - Benjamin Baka
Medical Image Segmentation Using Artificial Neural Networks
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper