Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning with Hadoop - Dipayan Dev
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Deep Learning with Python - Francois Cholletf
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
R Deep Learning Essentials - Dr. Joshua F.Wiley
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Introduction to Scientific Programming with Python - Joakim Sundnes
Python Machine Learning Eqution Reference - Sebastian Raschka
Deep Learning in Python - LazyProgrammer
Java Deep Learning Essentials - Yusuke Sugomori
Medical Image Segmentation Using Artificial Neural Networks
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Pattern recognition and machine learning - Christopher M.Bishop
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Python Data Structures and Algorithms - Benjamin Baka
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Deep Learning with Theano - Christopher Bourez
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Introduction to the Math of Neural Networks - Jeff Heaton
An introduction to neural networks - Kevin Gurney & University of Sheffield