Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Deep Learning with Python - Francois Cholletf
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Neural Networks and Deep Learning - Charu C.Aggarwal
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Python Deep Learning Cookbook - Indra den Bakker
Python Data Structures and Algorithms - Benjamin Baka
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Machine Learning with spark and python - Michael Bowles
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Learn Keras for Deep Neural Networks - Jojo Moolayil
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Neural Networks - A visual introduction for beginners - Michael Taylor
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Coding Theory - Algorithms, Architectures and Application
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
The hundred-page Machine Learning Book - Andriy Burkov
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning for Natural Language Processing - Jason Brownlee
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Fundamentals of Deep Learning - Nikhil Bubuma
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Medical Image Segmentation Using Artificial Neural Networks
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Python Machine Learning Eqution Reference - Sebastian Raschka