Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Machine Learning with spark and python - Michael Bowles
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Python Deep Learning Cookbook - Indra den Bakker
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Data Science and Big Data Analytics - EMC Education Services
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Medical Image Segmentation Using Artificial Neural Networks
Deep Learning for Natural Language Processing - Jason Brownlee
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Deep Learning with PyTorch - Vishnu Subramanian
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
R Deep Learning Essentials - Dr. Joshua F.Wiley
Coding Theory - Algorithms, Architectures and Application
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
The hundred-page Machine Learning Book - Andriy Burkov
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
An introduction to neural networks - Kevin Gurney & University of Sheffield
Fundamentals of Deep Learning - Nikhil Bubuma
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning with Python - Francois Cholletf
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Deep Learning with Theano - Christopher Bourez
Introduction to Scientific Programming with Python - Joakim Sundnes
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Deep Learning and Neural Networks - Jeff Heaton