Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Amazon Machine Learning Developer Guild Version Latest
Deep Learning with Theano - Christopher Bourez
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Deep Learning with PyTorch - Vishnu Subramanian
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
R Deep Learning Essentials - Dr. Joshua F.Wiley
Python Machine Learning - Sebastian Raschka
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Python Data Structures and Algorithms - Benjamin Baka
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Java Deep Learning Essentials - Yusuke Sugomori
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Pattern recognition and machine learning - Christopher M.Bishop
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Machine Learning with spark and python - Michael Bowles
Coding Theory - Algorithms, Architectures and Application
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Neural Networks - A visual introduction for beginners - Michael Taylor
Medical Image Segmentation Using Artificial Neural Networks
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Deep Learning with Python - Francois Chollet
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...