Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Coding Theory - Algorithms, Architectures and Application
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Introduction to Deep Learning - Eugene Charniak
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Fundamentals of Deep Learning - Nikhil Bubuma
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Deep Learning in Python - LazyProgrammer
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Neural Networks - A visual introduction for beginners - Michael Taylor
Pattern recognition and machine learning - Christopher M.Bishop
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Introduction to the Math of Neural Networks - Jeff Heaton
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Medical Image Segmentation Using Artificial Neural Networks
Introduction to Scientific Programming with Python - Joakim Sundnes
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Python Data Structures and Algorithms - Benjamin Baka
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
An introduction to neural networks - Kevin Gurney & University of Sheffield
Python Machine Learning Eqution Reference - Sebastian Raschka
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Deep Learning with Theano - Christopher Bourez
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Deep Learning with Keras - Antonio Gulli & Sujit Pal