Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Machine Learning with spark and python - Michael Bowles
Python Deep Learning Cookbook - Indra den Bakker
Python Data Structures and Algorithms - Benjamin Baka
Learn Keras for Deep Neural Networks - Jojo Moolayil
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
R Deep Learning Essentials - Dr. Joshua F.Wiley
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Deep Learning with Theano - Christopher Bourez
Deep Learning with PyTorch - Vishnu Subramanian
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Amazon Machine Learning Developer Guild Version Latest
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Deep Learning for Natural Language Processing - Jason Brownlee
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Medical Image Segmentation Using Artificial Neural Networks
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Deep Learning with Hadoop - Dipayan Dev
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Data Science and Big Data Analytics - EMC Education Services
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Python Machine Learning Eqution Reference - Sebastian Raschka
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Fundamentals of Deep Learning - Nikhil Bubuma
Deep Learning and Neural Networks - Jeff Heaton