Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Python Machine Learning - Sebastian Raschka
Coding Theory - Algorithms, Architectures and Application
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Deep Learning with Python - Francois Cholletf
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Introduction to Deep Learning - Eugene Charniak
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Python Deep Learning Cookbook - Indra den Bakker
Machine Learning with spark and python - Michael Bowles
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Python Machine Learning Eqution Reference - Sebastian Raschka
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Medical Image Segmentation Using Artificial Neural Networks
Deep Learning with PyTorch - Vishnu Subramanian
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Artificial Intelligence by example - Denis Rothman
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster