Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python Machine Learning - Sebastian Raschka
Amazon Machine Learning Developer Guild Version Latest
Artificial Intelligence by example - Denis Rothman
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Learn Keras for Deep Neural Networks - Jojo Moolayil
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
An introduction to neural networks - Kevin Gurney & University of Sheffield
Python Deep Learning Cookbook - Indra den Bakker
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning and Neural Networks - Jeff Heaton
Introduction to the Math of Neural Networks - Jeff Heaton
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Python Machine Learning Eqution Reference - Sebastian Raschka
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Deep Learning with Python - Francois Cholletf
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Data Science and Big Data Analytics - EMC Education Services
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Deep Learning with Theano - Christopher Bourez
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Deep Learning with Keras - Antonio Gulli & Sujit Pal