Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with PyTorch - Vishnu Subramanian
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Deep Learning in Python - LazyProgrammer
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Machine Learning with spark and python - Michael Bowles
Deep Learning with Hadoop - Dipayan Dev
Deep Learning with Python - Francois Cholletf
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Deep Learning with Theano - Christopher Bourez
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
R Deep Learning Essentials - Dr. Joshua F.Wiley
Coding Theory - Algorithms, Architectures and Application
Java Deep Learning Essentials - Yusuke Sugomori
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Machine Learning with Python for everyone - Mark E.Fenner
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Python Machine Learning Eqution Reference - Sebastian Raschka
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Intelligent Projects Using Python - Santanu Pattanayak
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali