Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Pattern recognition and machine learning - Christopher M.Bishop
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Deep Learning in Python - LazyProgrammer
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Intelligent Projects Using Python - Santanu Pattanayak
Deep Learning with Python - Francois Chollet
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Deep Learning with Hadoop - Dipayan Dev
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Python Data Structures and Algorithms - Benjamin Baka
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Java Deep Learning Essentials - Yusuke Sugomori
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Machine Learning with spark and python - Michael Bowles
Deep Learning with PyTorch - Vishnu Subramanian
Neural Networks and Deep Learning - Charu C.Aggarwal