Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Machine Learning with spark and python - Michael Bowles
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Learn Keras for Deep Neural Networks - Jojo Moolayil
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Artificial Intelligence by example - Denis Rothman
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
An introduction to neural networks - Kevin Gurney & University of Sheffield
Fundamentals of Deep Learning - Nikhil Bubuma
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Neural Networks - A visual introduction for beginners - Michael Taylor
Intelligent Projects Using Python - Santanu Pattanayak
Deep Learning for Natural Language Processing - Jason Brownlee
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Python Machine Learning Eqution Reference - Sebastian Raschka
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning with Keras - Antonio Gulli & Sujit Pal
R Deep Learning Essentials - Dr. Joshua F.Wiley
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Neural Networks and Deep Learning - Charu C.Aggarwal
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Deep Learning with Hadoop - Dipayan Dev
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Amazon Machine Learning Developer Guild Version Latest