Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Deep Learning with Theano - Christopher Bourez
Deep Learning and Neural Networks - Jeff Heaton
Introduction to Deep Learning - Eugene Charniak
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
An introduction to neural networks - Kevin Gurney & University of Sheffield
Deep Learning with Hadoop - Dipayan Dev
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Machine Learning with Python for everyone - Mark E.Fenner
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Neural Networks and Deep Learning - Charu C.Aggarwal
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Coding Theory - Algorithms, Architectures and Application
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Python Deep Learning Cookbook - Indra den Bakker
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Data Science and Big Data Analytics - EMC Education Services
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Machine Learning with spark and python - Michael Bowles
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Deep Learning for Natural Language Processing - Jason Brownlee
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...