Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Machine Learning with spark and python - Michael Bowles
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Python Machine Learning - Sebastian Raschka
Coding Theory - Algorithms, Architectures and Application
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
An introduction to neural networks - Kevin Gurney & University of Sheffield
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning for Natural Language Processing - Jason Brownlee
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Python Deep Learning Cookbook - Indra den Bakker
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Python Data Structures and Algorithms - Benjamin Baka
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning in Python - LazyProgrammer
Introduction to Deep Learning - Eugene Charniak
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Pattern recognition and machine learning - Christopher M.Bishop
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Amazon Machine Learning Developer Guild Version Latest
The hundred-page Machine Learning Book - Andriy Burkov
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Java Deep Learning Essentials - Yusuke Sugomori