Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Coding Theory - Algorithms, Architectures and Application
Learn Keras for Deep Neural Networks - Jojo Moolayil
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Introduction to the Math of Neural Networks - Jeff Heaton
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Deep Learning with Python - Francois Cholletf
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Data Science and Big Data Analytics - EMC Education Services
Artificial Intelligence by example - Denis Rothman
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Amazon Machine Learning Developer Guild Version Latest
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Introduction to Scientific Programming with Python - Joakim Sundnes
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Medical Image Segmentation Using Artificial Neural Networks
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with Theano - Christopher Bourez
Intelligent Projects Using Python - Santanu Pattanayak
Neural Networks - A visual introduction for beginners - Michael Taylor
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Pattern recognition and machine learning - Christopher M.Bishop
Python Deep Learning Cookbook - Indra den Bakker