Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Deep Learning in Python - LazyProgrammer
Pattern recognition and machine learning - Christopher M.Bishop
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Intelligent Projects Using Python - Santanu Pattanayak
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Python Machine Learning - Sebastian Raschka
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning with Python - Francois Cholletf
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Learn Keras for Deep Neural Networks - Jojo Moolayil
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Introduction to Scientific Programming with Python - Joakim Sundnes
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Amazon Machine Learning Developer Guild Version Latest
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning with Hadoop - Dipayan Dev