Introduction to Deep Learning – Eugene Charniak

Your author is a long-time artificial-intelligence researcher whose field of expertise, natural-language processing, has been revolutionized by deep learning. Unfortunately, it took him (me) a long time to catch on to this fact. I can rationalize this since this is the third time neural networks have threatened a revolution but only the first time they have delivered. Nevertheless, I suddenly found myself way behind the times and struggling to catch up. So I did what any self-respecting professor would do, scheduled myself to teach the stuff, started a crash course by surfing the web, and got my students to teach it to me. (This last is not a joke. In particular, the head undergraduate teaching assistant for the course, Siddarth (Sidd) Karramcheti, deserves special mention.)

This explains several prominent features of this book. First, it is short. I am a slow learner. Second, it is very much project driven. Many texts, particularly in computer science, have a constant tension between topic organization and organizing material around specific projects. Splitting thedifference is often a good idea, but I find I learn computer science materialbest by sitting down and writing programs, so my book largely re ects mylearning habits. It was the most convenient way to put it down, and I amhoping many in the expected audience will find it helpful as well.

Which brings up the question of the expected audience. While I hopemany CS practitioners will find this book useful for the same reason I wroteit, as a teacher my first loyalty is to my students, so this book is primarilyintended as a textbook for a course on deep learning. The course I teach atBrown is for both graduate and undergraduates and covers all the materialherein, plus some \culture” lectures (for graduate credit a student must adda significant final project). Both linear algebra and multivariate calculus arerequired. While the actual quantity of linear-algebra material is not thatgreat, students have told me that without it they would have found thinkingabout multilevel networks, and the tensors they require, quite dificult.Multivariate calculus, however, was a much closer call. It appears explicitly only in Chapter 1, when we build up to back-propagation from scratch andI would not be surprised if an extra lecture on partial derivatives would do.Last, there is a probability and statistics prerequisite. This simplifies theexposition and I certainly want to encourage students to take such a course.I also assume a rudimentary knowledge of programming in Python. I do notinclude this in the text, but my course has an extra \lab” on basic Python.That your author was playing catch-up when writing this book alsoexplains the fact that in almost every chapter’s section on further readingyou will find, beyond the usual references to important research papers,many reference to secondary sources |others’ educational writings. I wouldnever have learned this material without them.

Related posts:

Deep Learning with Theano - Christopher Bourez
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Neural Networks - A visual introduction for beginners - Michael Taylor
R Deep Learning Essentials - Dr. Joshua F.Wiley
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
The hundred-page Machine Learning Book - Andriy Burkov
An introduction to neural networks - Kevin Gurney & University of Sheffield
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Python Deep Learning Cookbook - Indra den Bakker
Data Science and Big Data Analytics - EMC Education Services
Pattern recognition and machine learning - Christopher M.Bishop
Deep Learning with Python - Francois Cholletf
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python Machine Learning Eqution Reference - Sebastian Raschka
Intelligent Projects Using Python - Santanu Pattanayak
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning with Python - Francois Chollet
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning in Python - LazyProgrammer
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Introduction to the Math of Neural Networks - Jeff Heaton
Introduction to Scientific Programming with Python - Joakim Sundnes
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster