Pattern recognition and machine learning – Christopher M.Bishop

Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propa- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications.

This new textbook reflects these recent developments while providing a compre- hensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or ma- chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not es- sential as the book includes a self-contained introduction to basic probability theory. Because this book has broad scope, it is impossible to provide a complete list of references, and in particular no attempt has been made to provide accurate historical attribution of ideas. Instead, the aim has been to give references that offer greater detail than is possible here and that hopefully provide entry points into what, in some cases, is a very extensive literature. For this reason, the references are often to more recent textbooks and review articles rather than to original sources.

Related posts:

Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Fundamentals of Deep Learning - Nikhil Bubuma
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
R Deep Learning Essentials - Dr. Joshua F.Wiley
Deep Learning with Python - Francois Chollet
Artificial Intelligence by example - Denis Rothman
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Python Machine Learning Eqution Reference - Sebastian Raschka
Deep Learning with PyTorch - Vishnu Subramanian
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Introduction to the Math of Neural Networks - Jeff Heaton
Machine Learning with Python for everyone - Mark E.Fenner
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Intelligent Projects Using Python - Santanu Pattanayak
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Machine Learning with spark and python - Michael Bowles
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Python Data Structures and Algorithms - Benjamin Baka
Python Machine Learning - Sebastian Raschka
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Python Deep Learning Cookbook - Indra den Bakker
Neural Networks - A visual introduction for beginners - Michael Taylor