Pattern recognition and machine learning – Christopher M.Bishop

Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propa- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications.

This new textbook reflects these recent developments while providing a compre- hensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or ma- chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not es- sential as the book includes a self-contained introduction to basic probability theory. Because this book has broad scope, it is impossible to provide a complete list of references, and in particular no attempt has been made to provide accurate historical attribution of ideas. Instead, the aim has been to give references that offer greater detail than is possible here and that hopefully provide entry points into what, in some cases, is a very extensive literature. For this reason, the references are often to more recent textbooks and review articles rather than to original sources.

Related posts:

Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Learn Keras for Deep Neural Networks - Jojo Moolayil
R Deep Learning Essentials - Dr. Joshua F.Wiley
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
An introduction to neural networks - Kevin Gurney & University of Sheffield
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
The hundred-page Machine Learning Book - Andriy Burkov
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Fundamentals of Deep Learning - Nikhil Bubuma
Python Machine Learning - Sebastian Raschka
Amazon Machine Learning Developer Guild Version Latest
Deep Learning with Python - Francois Cholletf
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Python Machine Learning Eqution Reference - Sebastian Raschka
Deep Learning for Natural Language Processing - Jason Brownlee
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Python Data Structures and Algorithms - Benjamin Baka
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Neural Networks - A visual introduction for beginners - Michael Taylor
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Medical Image Segmentation Using Artificial Neural Networks
Neural Networks and Deep Learning - Charu C.Aggarwal