Pattern recognition and machine learning – Christopher M.Bishop

Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propa- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications.

This new textbook reflects these recent developments while providing a compre- hensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or ma- chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not es- sential as the book includes a self-contained introduction to basic probability theory. Because this book has broad scope, it is impossible to provide a complete list of references, and in particular no attempt has been made to provide accurate historical attribution of ideas. Instead, the aim has been to give references that offer greater detail than is possible here and that hopefully provide entry points into what, in some cases, is a very extensive literature. For this reason, the references are often to more recent textbooks and review articles rather than to original sources.

Related posts:

Data Science and Big Data Analytics - EMC Education Services
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Coding Theory - Algorithms, Architectures and Application
Amazon Machine Learning Developer Guild Version Latest
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
The hundred-page Machine Learning Book - Andriy Burkov
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Learn Keras for Deep Neural Networks - Jojo Moolayil
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Deep Learning with Hadoop - Dipayan Dev
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Deep Learning with Theano - Christopher Bourez
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Deep Learning with Python - Francois Chollet
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Introduction to Deep Learning - Eugene Charniak
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with Python - Francois Cholletf
Deep Learning for Natural Language Processing - Jason Brownlee
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Machine Learning with Python for everyone - Mark E.Fenner
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Deep Learning in Python - LazyProgrammer
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python Artificial Intelligence Project for Beginners - Joshua Eckroth