Artificial Intelligence with an introduction to Machine Learning second edition – Richar E. Neapolitan & Xia Jiang

Over the years, my view of an artificial intelligence (AI) course has changed significantly. I used to view it as a course that should discuss our efforts to develop an artificial entity that can learn and make decisions in a complex, changing environment, affect that environment, and communicate its knowledge and choices to humans; that is, an entity that can think. I would therefore cover the weak AI methods that failed to scale up. However, as strong methods that solved challenging problems in limited domains became more predominant, my course increasingly concerned these methods. I would cover backward chaining, forward chaining, planning, inference in Bayesian networks, normative decision analysis, evolutionary
computation, decision tree learning, Bayesian network learning, supervised and unsupervised learning, and reinforcement learning. I would show useful applications of these methods.

These techniques have come to be as important to a computer science student’s repertoire as techniques such as divide-and-conquer, greedy methods, branch-and-bound, etc. Yet a student would not see them unless the student took an AI course. So my AI course evolved into a course that undergraduate students would take either concurrently or following an
analysis of algorithms course, and would cover what I viewed as important problem-solving strategies that have emerged from the field of AI. I feel such a course should be a standard component of every computer science curriculum just like data structures and analysis of algorithms.

Related posts:

Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Introduction to Deep Learning - Eugene Charniak
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Artificial Intelligence by example - Denis Rothman
Deep Learning with PyTorch - Vishnu Subramanian
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Neural Networks - A visual introduction for beginners - Michael Taylor
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Medical Image Segmentation Using Artificial Neural Networks
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Python Deep Learning Cookbook - Indra den Bakker
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Learn Keras for Deep Neural Networks - Jojo Moolayil
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
An introduction to neural networks - Kevin Gurney & University of Sheffield
Pattern recognition and machine learning - Christopher M.Bishop
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Python Machine Learning Eqution Reference - Sebastian Raschka
The hundred-page Machine Learning Book - Andriy Burkov
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Coding Theory - Algorithms, Architectures and Application
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Deep Learning with Python - Francois Chollet
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants