This is a Java Program to implement 2D KD Tree and Search an element. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Perform Searching in a 2-Dimension K-D Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to search an element in a 2D KD Tree import java.io.IOException; import java.util.Scanner; class KD2DNode { int axis; double[] x; int id; boolean checked; boolean orientation; KD2DNode Parent; KD2DNode Left; KD2DNode Right; public KD2DNode(double[] x0, int axis0) { x = new double[2]; axis = axis0; for (int k = 0; k < 2; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KD2DNode FindParent(double[] x0) { KD2DNode parent = null; KD2DNode next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KD2DNode Insert(double[] p) { x = new double[2]; KD2DNode parent = FindParent(p); if (equal(p, parent.x, 2) == true) return null; KD2DNode newNode = new KD2DNode(p, parent.axis + 1 < 2 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KD2DTree { KD2DNode Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KD2DNode nearest_neighbour; int KD_id; int nList; KD2DNode CheckedNodes[]; int checked_nodes; KD2DNode List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KD2DTree(int i) { Root = null; KD_id = 1; nList = 0; List = new KD2DNode[i]; CheckedNodes = new KD2DNode[i]; max_boundary = new boolean[2]; min_boundary = new boolean[2]; x_min = new double[2]; x_max = new double[2]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KD2DNode(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KD2DNode pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KD2DNode find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KD2DNode parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 2); ; if (parent.equal(x, parent.x, 2) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KD2DNode node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KD2DNode node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 2; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KD2DNode search_parent(KD2DNode parent, double[] x) { for (int k = 0; k < 2; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KD2DNode search_root = parent; while (parent != null && (n_boundary != 2 * 2)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } public void inorder() { inorder(Root); } private void inorder(KD2DNode root) { if (root != null) { inorder(root.Left); System.out.print("(" + root.x[0] + ", " + root.x[1] + ") "); inorder(root.Right); } } public void preorder() { preorder(Root); } private void preorder(KD2DNode root) { if (root != null) { System.out.print("(" + root.x[0] + ", " + root.x[1] + ") "); inorder(root.Left); inorder(root.Right); } } public void postorder() { postorder(Root); } private void postorder(KD2DNode root) { if (root != null) { inorder(root.Left); inorder(root.Right); System.out.print("(" + root.x[0] + ", " + root.x[1] + ") "); } } public void search(double x, double y) { search(Root, x, y); } private void search(KD2DNode root, double x, double y) { if (root != null) { search(root.Left, x, y); if (x == root.x[0] && y == root.x[1]) System.out.print("True (" + root.x[0] + ", " + root.x[1] + ") "); search(root.Right, x, y); } } } public class KD2D_Search { public static void main(String args[]) throws IOException { int numpoints = 5; Scanner sc = new Scanner(System.in); KD2DTree kdt = new KD2DTree(numpoints); double x[] = new double[2]; x[0] = 0.0; x[1] = 0.0; kdt.add(x); x[0] = 3.3; x[1] = 1.5; kdt.add(x); x[0] = 4.7; x[1] = 11.1; kdt.add(x); x[0] = 5.0; x[1] = 12.3; kdt.add(x); x[0] = 5.1; x[1] = 1.2; kdt.add(x); System.out.println("Enter the co-ordinates of the point: <x> <y>"); double x1 = sc.nextDouble(); double y1 = sc.nextDouble(); kdt.search(x1, y1); System.out.println("\nInorder of 2D Kd tree: "); kdt.inorder(); System.out.println("\nPreorder of 2D Kd tree: "); kdt.preorder(); System.out.println("\npostorder of 2D Kd tree: "); kdt.postorder(); sc.close(); } }
Output:
$ javac KD2D_Search.java $ java KD2D_Search Enter the co-ordinates of the point: <x> <y> 5.1 1.2 True (5.1, 1.2) Inorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) Preorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) postorder of 2D Kd tree: (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) (0.0, 0.0)
Related posts:
New Stream Collectors in Java 9
Circular Dependencies in Spring
Java Program to Find Whether a Path Exists Between 2 Given Nodes
Serve Static Resources with Spring
Remove All Occurrences of a Specific Value from a List
Phân biệt JVM, JRE, JDK
Java – Reader to InputStream
Check If Two Lists are Equal in Java
Injecting Prototype Beans into a Singleton Instance in Spring
Java Program to Perform Arithmetic Operations on Numbers of Size
Java Program to Implement Hash Tables with Double Hashing
JPA/Hibernate Persistence Context
A Guide to Apache Commons Collections CollectionUtils
ThreadPoolTaskExecutor corePoolSize vs. maxPoolSize
Date Time trong Java 8
Spring Web Annotations
Lớp TreeMap trong Java
Spring MVC Custom Validation
An Example of Load Balancing with Zuul and Eureka
Java Program to Implement Gabow Algorithm
Java Program to Check whether Directed Graph is Connected using DFS
Unsatisfied Dependency in Spring
Removing all duplicates from a List in Java
Giới thiệu SOAP UI và thực hiện test Web Service
Spring NoSuchBeanDefinitionException
Using a Custom Spring MVC’s Handler Interceptor to Manage Sessions
Java Program to Implement Bresenham Line Algorithm
Java Program to Check Whether an Input Binary Tree is the Sub Tree of the Binary Tree
Java Program to Implement ScapeGoat Tree
Java Program to Solve a Matching Problem for a Given Specific Case
Spring Cloud AWS – Messaging Support
Java Program to Implement wheel Sieve to Generate Prime Numbers Between Given Range