per nextum in unam tum XI conscribementis fac sic
vestibulo perlegementum da varo.
morde varo.
seqis cumula varum.
cis
per nextum in unam tum XI conscribementis fac sic
seqis decumulamenta da varo.
varum privamentum fodementum da aresulto.
varum tum III elevamentum tum V multiplicamentum da bresulto.
aresultum tum bresultum addementum da resulto.
si CD tum resultum non praestantiam fac sic
dictum sic f(%d) = %.2f cis tum varum tum resultum egresso describe.
novumversum egresso scribe.
cis
si CD tum resultum praestantiam fac sic
dictum sic f(%d) = MAGNA NIMIS! cis tum varum egresso describe.
novumversum egresso scribe.
cis
cis
Input
The input consists of several integers, one per line. Each integer is between -50 and 50, inclusive.Output
As described in the problem statement.Exampleinput
0 1 -2 -3 -4 -5 -6 -7 -8 -9 10
output
f(10) = MAGNA NIMIS! f(-9) = -3642.00 f(-8) = -2557.17 f(-7) = -1712.35 f(-6) = -1077.55 f(-5) = -622.76 f(-4) = -318.00 f(-3) = -133.27 f(-2) = -38.59 f(1) = 6.00 f(0) = 0.00
Solution:
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); vector<int> as(11); for (int i = 0; i < 11; i++) { cin >> as[i]; } cout << fixed << setprecision(2); for (int i = 10; i >= 0; i--) { int v = as[i]; double a = sqrt(abs(v)); double b = v * v * v * 5; double res = a + b; if (res > 400) { cout << "f(" << v << ") = MAGNA NIMIS!" << '\n'; } else { cout << "f(" << v << ") = " << res << '\n'; } } return 0; }
Related posts:
Finding area of simple polygon in $O(N)$
Optimal Point on a Line
Beautiful fountains rows
Fence
Chain Reaction
Sereja and Algorithm
Encoding
Hongcow's Game
New Year and Rating
Finding the rank of a matrix
Travel Card
Bear and Destroying Subtrees
Bear and Polynomials
Pokermon League challenge
World Eater Brothers
Disjoint Set Union
New Year and Cleaning
Divisor Paths
Design Tutorial: Learn from Math
Party
A Game on Strings
Work Group
Into Blocks (easy version)
Cinema
Pearls in a Row
The Door Problem
Colorful Bricks
Curious Array
Lucky Days
Leaf Partition
Factorial modulo $p$
Newton's method for finding roots