New Year and Permutation

Recall that the permutation is an array consisting of $n$ distinct integers from $1$ to $n$ in arbitrary order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation ($2$ appears twice in the array) and $[1,3,4]$ is also not a permutation ($n=3$ but there is $4$ in the array).

A sequence $a$ is a subsegment of a sequence $b$ if $a$ can be obtained from $b$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end. We will denote the subsegments as $[l, r]$, where $l, r$ are two integers with $1 \le l \le r \le n$. This indicates the subsegment where $l-1$ elements from the beginning and $n-r$ elements from the end are deleted from the sequence.

For a permutation $p_1, p_2, \ldots, p_n$, we define a framed segment as a subsegment $[l,r]$ where $\max\{p_l, p_{l+1}, \dots, p_r\} – \min\{p_l, p_{l+1}, \dots, p_r\} = r – l$. For example, for the permutation $(6, 7, 1, 8, 5, 3, 2, 4)$ some of its framed segments are: $[1, 2], [5, 8], [6, 7], [3, 3], [8, 8]$. In particular, a subsegment $[i,i]$ is always a framed segments for any $i$ between $1$ and $n$, inclusive.

We define the happiness of a permutation $p$ as the number of pairs $(l, r)$ such that $1 \le l \le r \le n$, and $[l, r]$ is a framed segment. For example, the permutation $[3, 1, 2]$ has happiness $5$: all segments except $[1, 2]$ are framed segments.

Given integers $n$ and $m$, Jongwon wants to compute the sum of happiness for all permutations of length $n$, modulo the prime number $m$. Note that there exist $n!$ (factorial of $n$) different permutations of length $n$.Input

The only line contains two integers $n$ and $m$ ($1 \le n \le 250\,000$, $10^8 \le m \le 10^9$, $m$ is prime).Output

Print $r$ ($0 \le r < m$), the sum of happiness for all permutations of length $n$, modulo a prime number $m$.Examplesinput

1 993244853

output

1

input

2 993244853

output

6

input

3 993244853

output

32

input

2019 993244853

output

923958830

input

2020 437122297

output

265955509

Note

For sample input $n=3$, let’s consider all permutations of length $3$:

  • $[1, 2, 3]$, all subsegments are framed segment. Happiness is $6$.
  • $[1, 3, 2]$, all subsegments except $[1, 2]$ are framed segment. Happiness is $5$.
  • $[2, 1, 3]$, all subsegments except $[2, 3]$ are framed segment. Happiness is $5$.
  • $[2, 3, 1]$, all subsegments except $[2, 3]$ are framed segment. Happiness is $5$.
  • $[3, 1, 2]$, all subsegments except $[1, 2]$ are framed segment. Happiness is $5$.
  • $[3, 2, 1]$, all subsegments are framed segment. Happiness is $6$.

Thus, the sum of happiness is $6+5+5+5+5+6 = 32$.

Solution:

#include <bits/stdc++.h>

using namespace std;

template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}

template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;

constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}

template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
    return v;
  }

  const Type& operator()() const { return value; }
  template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }

Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
  template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
Modular& operator++() { return *this += 1; }
Modular& operator--() { return *this -= 1; }
Modular operator++(int) { Modular result(*this); *this += 1; return result; }
Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
Modular operator-() const { return Modular(-value); }

template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (mod())
);
value = m;
#else
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
return *this;
}
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int64_t>::value, Modular>::type& operator*=(const Modular& rhs) {
int64_t q = static_cast<int64_t>(static_cast<long double>(value) * rhs.value / mod());
value = normalize(value * rhs.value - q * mod());
return *this;
}
template <typename U = T>
typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(value * rhs.value);
return *this;
}

Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }

template <typename U>
friend const Modular<U>& abs(const Modular<U>& v) { return v; }

template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);

template <typename U>
friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);

template <typename U>
friend std::istream& operator>>(std::istream& stream, Modular<U>& number);

private:
Type value;
};

template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }

template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }

template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }

template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }

template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }

template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }

template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }

template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
assert(b >= 0);
Modular<T> x = a, res = 1;
U p = b;
while (p > 0) {
if (p & 1) res *= x;
x *= x;
p >>= 1;
}
return res;
}

template <typename T>
bool IsZero(const Modular<T>& number) {
return number() == 0;
}

template <typename T>
string to_string(const Modular<T>& number) {
return to_string(number());
}

template <typename T>
std::ostream& operator<<(std::ostream& stream, const Modular<T>& number) {
return stream << number();
}

template <typename T>
std::istream& operator>>(std::istream& stream, Modular<T>& number) {
typename common_type<typename Modular<T>::Type, int64_t>::type x;
stream >> x;
number.value = Modular<T>::normalize(x);
return stream;
}

using ModType = int;

struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;

int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n >> md;
vector<Mint> fact(n + 1);
fact[0] = 1;
for (int i = 1; i <= n; i++) {
    fact[i] = fact[i - 1] * i;
  }
  Mint ans = 0;
  for (int k = 1; k <= n; k++) {
    Mint cur = (n - k + 1) * fact[k] * (n - k + 1) * fact[n - k];
    ans += cur;
  }
  cout << ans << '\n';
  return 0;
}