Java Program to Implement Gift Wrapping Algorithm in Two Dimensions

This is a Java Program to implement Gift Wrapping Algorithm. For the sake of simplicity, the description below assumes that the points are in general position, i.e., no three points are collinear. The algorithm may be easily modified to deal with collinearity, including the choice whether it should report only extreme points (vertices of the convex hull) or all points that lie on the convex hull.

Here is the source code of the Java Program to Implement Gift Wrapping Algorithm in Two Dimensions. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to implement gift warpping algorithm in 2 dimension
import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;
import java.util.Stack;
 
class Point2D implements Comparable<Point2D>
{
    public static final Comparator<Point2D> X_ORDER = new XOrder();
    public static final Comparator<Point2D> Y_ORDER = new YOrder();
    public static final Comparator<Point2D> R_ORDER = new ROrder();
    public final Comparator<Point2D> POLAR_ORDER = new PolarOrder();
    public final Comparator<Point2D> ATAN2_ORDER = new Atan2Order();
    public final Comparator<Point2D> DISTANCE_TO_ORDER = new DistanceToOrder();
 
    private final double x; // x coordinate
    private final double y; // y coordinate
 
    public Point2D(double x, double y)
    {
        if (Double.isInfinite(x) || Double.isInfinite(y))
            throw new IllegalArgumentException("Coordinates must be finite");
        if (Double.isNaN(x) || Double.isNaN(y))
            throw new IllegalArgumentException("Coordinates cannot be NaN");
        if (x == 0.0)
            x = 0.0; // convert -0.0 to +0.0
        if (y == 0.0)
            y = 0.0; // convert -0.0 to +0.0
        this.x = x;
        this.y = y;
    }
 
    public double x()
    {
        return x;
    }
 
    public double y()
    {
        return y;
    }
 
    public double r()
    {
        return Math.sqrt(x * x + y * y);
    }
 
    public double theta()
    {
        return Math.atan2(y, x);
    }
 
    private double angleTo(Point2D that)
    {
        double dx = that.x - this.x;
        double dy = that.y - this.y;
        return Math.atan2(dy, dx);
    }
 
    public static int ccw(Point2D a, Point2D b, Point2D c)
    {
        double area2 = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
        if (area2 < 0)
            return -1;
        else if (area2 > 0)
            return +1;
        else
            return 0;
    }
 
    public static double area2(Point2D a, Point2D b, Point2D c)
    {
        return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
    }
 
    public double distanceTo(Point2D that)
    {
        double dx = this.x - that.x;
        double dy = this.y - that.y;
        return Math.sqrt(dx * dx + dy * dy);
    }
 
    public double distanceSquaredTo(Point2D that)
    {
        double dx = this.x - that.x;
        double dy = this.y - that.y;
        return dx * dx + dy * dy;
    }
 
    public int compareTo(Point2D that)
    {
        if (this.y < that.y)
            return -1;
        if (this.y > that.y)
            return +1;
        if (this.x < that.x)
            return -1;
        if (this.x > that.x)
            return +1;
        return 0;
    }
 
    private static class XOrder implements Comparator<Point2D>
    {
        public int compare(Point2D p, Point2D q)
        {
            if (p.x < q.x)
                return -1;
            if (p.x > q.x)
                return +1;
            return 0;
        }
    }
 
    private static class YOrder implements Comparator<Point2D>
    {
        public int compare(Point2D p, Point2D q)
        {
            if (p.y < q.y)
                return -1;
            if (p.y > q.y)
                return +1;
            return 0;
        }
    }
 
    private static class ROrder implements Comparator<Point2D>
    {
        public int compare(Point2D p, Point2D q)
        {
            double delta = (p.x * p.x + p.y * p.y) - (q.x * q.x + q.y * q.y);
            if (delta < 0)
                return -1;
            if (delta > 0)
                return +1;
            return 0;
        }
    }
 
    private class Atan2Order implements Comparator<Point2D>
    {
        public int compare(Point2D q1, Point2D q2)
        {
            double angle1 = angleTo(q1);
            double angle2 = angleTo(q2);
            if (angle1 < angle2)
                return -1;
            else if (angle1 > angle2)
                return +1;
            else
                return 0;
        }
    }
 
    private class PolarOrder implements Comparator<Point2D>
    {
        public int compare(Point2D q1, Point2D q2)
        {
            double dx1 = q1.x - x;
            double dy1 = q1.y - y;
            double dx2 = q2.x - x;
            double dy2 = q2.y - y;
 
            if (dy1 >= 0 && dy2 < 0)
                return -1; // q1 above; q2 below
            else if (dy2 >= 0 && dy1 < 0)
                return +1; // q1 below; q2 above
            else if (dy1 == 0 && dy2 == 0)
            { // 3-collinear and horizontal
                if (dx1 >= 0 && dx2 < 0)
                    return -1;
                else if (dx2 >= 0 && dx1 < 0)
                    return +1;
                else
                    return 0;
            } else
                return -ccw(Point2D.this, q1, q2); // both above or below
        }
    }
 
    private class DistanceToOrder implements Comparator<Point2D>
    {
        public int compare(Point2D p, Point2D q)
        {
            double dist1 = distanceSquaredTo(p);
            double dist2 = distanceSquaredTo(q);
            if (dist1 < dist2)
                return -1;
            else if (dist1 > dist2)
                return +1;
            else
                return 0;
        }
    }
 
    public boolean equals(Object other)
    {
        if (other == this)
            return true;
        if (other == null)
            return false;
        if (other.getClass() != this.getClass())
            return false;
        Point2D that = (Point2D) other;
        return this.x == that.x && this.y == that.y;
    }
 
    public String toString()
    {
        return "(" + x + ", " + y + ")";
    }
 
    public int hashCode()
    {
        int hashX = ((Double) x).hashCode();
        int hashY = ((Double) y).hashCode();
        return 31 * hashX + hashY;
    }
 
}
 
public class Gift_Wrapping_Algorithm
{
    private Stack<Point2D> hull = new Stack<Point2D>();
 
    public Gift_Wrapping_Algorithm(Point2D[] pts)
    {
 
        // defensive copy
        int N = pts.length;
        Point2D[] points = new Point2D[N];
        for (int i = 0; i < N; i++)
            points[i] = pts[i];
        Arrays.sort(points);
 
        Arrays.sort(points, 1, N, points[0].POLAR_ORDER);
 
        hull.push(points[0]); // p[0] is first extreme point
        int k1;
        for (k1 = 1; k1 < N; k1++)
            if (!points[0].equals(points[k1]))
                break;
        if (k1 == N)
            return; // all points equal
 
        int k2;
        for (k2 = k1 + 1; k2 < N; k2++)
            if (Point2D.ccw(points[0], points[k1], points[k2]) != 0)
                break;
        hull.push(points[k2 - 1]); // points[k2-1] is second extreme point
 
        for (int i = k2; i < N; i++)
        {
            Point2D top = hull.pop();
            while (Point2D.ccw(hull.peek(), top, points[i]) <= 0)
            {
                top = hull.pop();
            }
            hull.push(top);
            hull.push(points[i]);
        }
 
        assert isConvex();
    }
 
    public Iterable<Point2D> hull()
    {
        Stack<Point2D> s = new Stack<Point2D>();
        for (Point2D p : hull)
            s.push(p);
        return s;
    }
 
    private boolean isConvex()
    {
        int N = hull.size();
        if (N <= 2)
            return true;
 
        Point2D[] points = new Point2D[N];
        int n = 0;
        for (Point2D p : hull())
        {
            points[n++] = p;
        }
 
        for (int i = 0; i < N; i++)
        {
            if (Point2D
                    .ccw(points[i], points[(i + 1) % N], points[(i + 2) % N]) <= 0)
            {
                return false;
            }
        }
        return true;
    }
 
    // test client
    public static void main(String[] args)
    {
        System.out.println("Gift Wrapping Algorithm");
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter the number of points");
        int N = sc.nextInt();
 
        Point2D[] points = new Point2D[N];
        System.out.println("Enter the coordinates of each points: <x> <y>");
        for (int i = 0; i < N; i++)
        {
            int x = sc.nextInt();
            int y = sc.nextInt();
            points[i] = new Point2D(x, y);
        }
        Gift_Wrapping_Algorithm graham = new Gift_Wrapping_Algorithm(points);
        System.out.println("The Wrapper covers following points: ");
        for (Point2D p : graham.hull())
            System.out.println(p);
 
        sc.close();
    }
 
}

Output:

$ javac Gift_Wrapping_Algorithm.java
$ java Gift_Wrapping_Algorithm
 
Gift Wrapping Algorithm
Enter the number of points
5
Enter the coordinates of each points: <x> <y>
12 10 
23 24 
10 6 
5 3 
3 1
The Wrapper covers following points: 
(3.0, 1.0)
(10.0, 6.0)
(23.0, 24.0)

Related posts:

Life Cycle of a Thread in Java
Java Program to Implement SimpeBindings API
Java Program to Find Location of a Point Placed in Three Dimensions Using K-D Trees
Spring Data JPA @Modifying Annotation
Split a String in Java
Spring REST with a Zuul Proxy
Spring Boot - Tracing Micro Service Logs
Đồng bộ hóa các luồng trong Java
Spring REST API + OAuth2 + Angular (using the Spring Security OAuth legacy stack)
Java Program to Test Using DFS Whether a Directed Graph is Strongly Connected or Not
A Custom Data Binder in Spring MVC
Java Program to Implement Self Balancing Binary Search Tree
OAuth2 for a Spring REST API – Handle the Refresh Token in Angular
Using Spring ResponseEntity to Manipulate the HTTP Response
Java Program to Implement TreeSet API
Filtering and Transforming Collections in Guava
Java Program to Implement Tarjan Algorithm
Java Program to Solve a Matching Problem for a Given Specific Case
Hướng dẫn Java Design Pattern – DAO
Java Program to Check whether Undirected Graph is Connected using BFS
Introduction to Spring Cloud CLI
Java Program to Generate Random Numbers Using Middle Square Method
4 tính chất của lập trình hướng đối tượng trong Java
Java Program to Check whether Graph is a Bipartite using DFS
Inject Parameters into JUnit Jupiter Unit Tests
Phương thức forEach() trong java 8
Java Program to Implement Shunting Yard Algorithm
Spring Cloud Bus
Java Program to Implement Fibonacci Heap
Java Program to Perform the Unique Factorization of a Given Number
Check If a String Is Numeric in Java
XML Serialization and Deserialization with Jackson