This is java program to solve the system of linear equations. This can be done by first representing equations(vectors) to matrix form, then finding the inverse of the matrix formed by the coefficients of variable and multiplying it with constants.
Here is the source code of the Java Program to Solve any Linear Equation in One Variable. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a sample program to solve the linear equations.
import java.util.Scanner;
public class Solve_Linear_Equation
{
public static void main(String args[])
{
char []var = {'x', 'y', 'z', 'w'};
System.out.println("Enter the number of variables in the equations: ");
Scanner input = new Scanner(System.in);
int n = input.nextInt();
System.out.println("Enter the coefficients of each variable for each equations");
System.out.println("ax + by + cz + ... = d");
double [][]mat = new double[n][n];
double [][]constants = new double[n][1];
//input
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
mat[i][j] = input.nextDouble();
}
constants[i][0] = input.nextDouble();
}
//Matrix representation
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
System.out.print(" "+mat[i][j]);
}
System.out.print(" "+ var[i]);
System.out.print(" = "+ constants[i][0]);
System.out.println();
}
//inverse of matrix mat[][]
double inverted_mat[][] = invert(mat);
System.out.println("The inverse is: ");
for (int i=0; i<n; ++i)
{
for (int j=0; j<n; ++j)
{
System.out.print(inverted_mat[i][j]+" ");
}
System.out.println();
}
//Multiplication of mat inverse and constants
double result[][] = new double[n][1];
for (int i = 0; i < n; i++)
{
for (int j = 0; j < 1; j++)
{
for (int k = 0; k < n; k++)
{
result[i][j] = result[i][j] + inverted_mat[i][k] * constants[k][j];
}
}
}
System.out.println("The product is:");
for(int i=0; i<n; i++)
{
System.out.println(result[i][0] + " ");
}
input.close();
}
public static double[][] invert(double a[][])
{
int n = a.length;
double x[][] = new double[n][n];
double b[][] = new double[n][n];
int index[] = new int[n];
for (int i=0; i<n; ++i)
b[i][i] = 1;
// Transform the matrix into an upper triangle
gaussian(a, index);
// Update the matrix b[i][j] with the ratios stored
for (int i=0; i<n-1; ++i)
for (int j=i+1; j<n; ++j)
for (int k=0; k<n; ++k)
b[index[j]][k]
-= a[index[j]][i]*b[index[i]][k];
// Perform backward substitutions
for (int i=0; i<n; ++i)
{
x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1];
for (int j=n-2; j>=0; --j)
{
x[j][i] = b[index[j]][i];
for (int k=j+1; k<n; ++k)
{
x[j][i] -= a[index[j]][k]*x[k][i];
}
x[j][i] /= a[index[j]][j];
}
}
return x;
}
// Method to carry out the partial-pivoting Gaussian
// elimination. Here index[] stores pivoting order.
public static void gaussian(double a[][], int index[])
{
int n = index.length;
double c[] = new double[n];
// Initialize the index
for (int i=0; i<n; ++i)
index[i] = i;
// Find the rescaling factors, one from each row
for (int i=0; i<n; ++i)
{
double c1 = 0;
for (int j=0; j<n; ++j)
{
double c0 = Math.abs(a[i][j]);
if (c0 > c1) c1 = c0;
}
c[i] = c1;
}
// Search the pivoting element from each column
int k = 0;
for (int j=0; j<n-1; ++j)
{
double pi1 = 0;
for (int i=j; i<n; ++i)
{
double pi0 = Math.abs(a[index[i]][j]);
pi0 /= c[index[i]];
if (pi0 > pi1)
{
pi1 = pi0;
k = i;
}
}
// Interchange rows according to the pivoting order
int itmp = index[j];
index[j] = index[k];
index[k] = itmp;
for (int i=j+1; i<n; ++i)
{
double pj = a[index[i]][j]/a[index[j]][j];
// Record pivoting ratios below the diagonal
a[index[i]][j] = pj;
// Modify other elements accordingly
for (int l=j+1; l<n; ++l)
a[index[i]][l] -= pj*a[index[j]][l];
}
}
}
}
Output:
$ javac Solve_Linear_Equation.java $ java Solve_Linear_Equation Enter the number of variables in the equations: 2 Enter the coefficients of each variable for each equations ax + by + cz + ... = d 1 2 3 3 2 1 1.0 2.0 x = 3.0 3.0 2.0 y = 1.0 The inverse is: -0.49999999999999994 0.5 0.7499999999999999 -0.24999999999999997 The product is: -0.9999999999999998 1.9999999999999996
Related posts:
Service Registration with Eureka
Mệnh đề if-else trong java
Intro to Spring Boot Starters
Inheritance with Jackson
Wrapper Classes in Java
Java Program to Implement Dijkstra’s Algorithm using Set
Giới thiệu về Stream API trong Java 8
Java String to InputStream
Guide to System.gc()
Spring Cloud AWS – S3
“Stream has already been operated upon or closed” Exception in Java
Jackson Unmarshalling JSON with Unknown Properties
Java Program to Implement Ternary Search Algorithm
Migrating from JUnit 4 to JUnit 5
Default Password Encoder in Spring Security 5
Java Program to Generate Date Between Given Range
Collect a Java Stream to an Immutable Collection
Java Program to Implement Suffix Tree
The Spring @Controller and @RestController Annotations
Constructor Dependency Injection in Spring
LIKE Queries in Spring JPA Repositories
Giới thiệu Aspect Oriented Programming (AOP)
Derived Query Methods in Spring Data JPA Repositories
Spring Security 5 – OAuth2 Login
Java Program to Implement Radix Sort
@Order in Spring
Java Program to Implement Hash Tables with Linear Probing
Spring Webflux and CORS
Transaction Propagation and Isolation in Spring @Transactional
Apache Commons Collections OrderedMap
Các kiểu dữ liệu trong java
Examine the internal DNS cache