This is java program to solve the system of linear equations. This can be done by first representing equations(vectors) to matrix form, then finding the inverse of the matrix formed by the coefficients of variable and multiplying it with constants.
Here is the source code of the Java Program to Solve any Linear Equation in One Variable. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a sample program to solve the linear equations. import java.util.Scanner; public class Solve_Linear_Equation { public static void main(String args[]) { char []var = {'x', 'y', 'z', 'w'}; System.out.println("Enter the number of variables in the equations: "); Scanner input = new Scanner(System.in); int n = input.nextInt(); System.out.println("Enter the coefficients of each variable for each equations"); System.out.println("ax + by + cz + ... = d"); double [][]mat = new double[n][n]; double [][]constants = new double[n][1]; //input for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { mat[i][j] = input.nextDouble(); } constants[i][0] = input.nextDouble(); } //Matrix representation for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { System.out.print(" "+mat[i][j]); } System.out.print(" "+ var[i]); System.out.print(" = "+ constants[i][0]); System.out.println(); } //inverse of matrix mat[][] double inverted_mat[][] = invert(mat); System.out.println("The inverse is: "); for (int i=0; i<n; ++i) { for (int j=0; j<n; ++j) { System.out.print(inverted_mat[i][j]+" "); } System.out.println(); } //Multiplication of mat inverse and constants double result[][] = new double[n][1]; for (int i = 0; i < n; i++) { for (int j = 0; j < 1; j++) { for (int k = 0; k < n; k++) { result[i][j] = result[i][j] + inverted_mat[i][k] * constants[k][j]; } } } System.out.println("The product is:"); for(int i=0; i<n; i++) { System.out.println(result[i][0] + " "); } input.close(); } public static double[][] invert(double a[][]) { int n = a.length; double x[][] = new double[n][n]; double b[][] = new double[n][n]; int index[] = new int[n]; for (int i=0; i<n; ++i) b[i][i] = 1; // Transform the matrix into an upper triangle gaussian(a, index); // Update the matrix b[i][j] with the ratios stored for (int i=0; i<n-1; ++i) for (int j=i+1; j<n; ++j) for (int k=0; k<n; ++k) b[index[j]][k] -= a[index[j]][i]*b[index[i]][k]; // Perform backward substitutions for (int i=0; i<n; ++i) { x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1]; for (int j=n-2; j>=0; --j) { x[j][i] = b[index[j]][i]; for (int k=j+1; k<n; ++k) { x[j][i] -= a[index[j]][k]*x[k][i]; } x[j][i] /= a[index[j]][j]; } } return x; } // Method to carry out the partial-pivoting Gaussian // elimination. Here index[] stores pivoting order. public static void gaussian(double a[][], int index[]) { int n = index.length; double c[] = new double[n]; // Initialize the index for (int i=0; i<n; ++i) index[i] = i; // Find the rescaling factors, one from each row for (int i=0; i<n; ++i) { double c1 = 0; for (int j=0; j<n; ++j) { double c0 = Math.abs(a[i][j]); if (c0 > c1) c1 = c0; } c[i] = c1; } // Search the pivoting element from each column int k = 0; for (int j=0; j<n-1; ++j) { double pi1 = 0; for (int i=j; i<n; ++i) { double pi0 = Math.abs(a[index[i]][j]); pi0 /= c[index[i]]; if (pi0 > pi1) { pi1 = pi0; k = i; } } // Interchange rows according to the pivoting order int itmp = index[j]; index[j] = index[k]; index[k] = itmp; for (int i=j+1; i<n; ++i) { double pj = a[index[i]][j]/a[index[j]][j]; // Record pivoting ratios below the diagonal a[index[i]][j] = pj; // Modify other elements accordingly for (int l=j+1; l<n; ++l) a[index[i]][l] -= pj*a[index[j]][l]; } } } }
Output:
$ javac Solve_Linear_Equation.java $ java Solve_Linear_Equation Enter the number of variables in the equations: 2 Enter the coefficients of each variable for each equations ax + by + cz + ... = d 1 2 3 3 2 1 1.0 2.0 x = 3.0 3.0 2.0 y = 1.0 The inverse is: -0.49999999999999994 0.5 0.7499999999999999 -0.24999999999999997 The product is: -0.9999999999999998 1.9999999999999996
Related posts:
Java Program to Solve Tower of Hanoi Problem using Stacks
Java Program to Find Transitive Closure of a Graph
Java Program to Implement the linear congruential generator for Pseudo Random Number Generation
The DAO with JPA and Spring
Java Program to Perform Partial Key Search in a K-D Tree
Java Program to Implement Hash Tables Chaining with Binary Trees
The Spring @Controller and @RestController Annotations
A Guide to Java SynchronousQueue
Hướng dẫn Java Design Pattern – DAO
Java Program to Implement Sorted Vector
Giới thiệu java.io.tmpdir
New Features in Java 13
Spring Boot Actuator
Remove HTML tags from a file to extract only the TEXT
Converting a Stack Trace to a String in Java
Java Program to Implement Gaussian Elimination Algorithm
Java Program to Implement Sorted Doubly Linked List
Java Program to Check if a Given Set of Three Points Lie on a Single Line or Not
Java Program to Implement Ternary Heap
Show Hibernate/JPA SQL Statements from Spring Boot
Java Program to Delete a Particular Node in a Tree Without Using Recursion
Spring Boot - Building RESTful Web Services
Java Program to Implement the Edmond’s Algorithm for Maximum Cardinality Matching
An Introduction to ThreadLocal in Java
Lớp HashMap trong Java
Spring Boot Annotations
Java Program to Implement Ternary Search Algorithm
Spring Boot - Batch Service
Partition a List in Java
Java Program to Implement SimpeBindings API
Spring WebClient vs. RestTemplate
Registration – Activate a New Account by Email