One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that.
For example, there is a statement called the “Goldbach’s conjecture”. It says: “each even number no less than four can be expressed as the sum of two primes”. Let’s modify it. How about a statement like that: “each integer no less than 12 can be expressed as the sum of two composite numbers.” Not like the Goldbach’s conjecture, I can prove this theorem.
You are given an integer n no less than 12, express it as a sum of two composite numbers.
Input
The only line contains an integer n (12 ≤ n ≤ 106).
Output
Output two composite integers x and y (1 < x, y < n) such that x + y = n. If there are multiple solutions, you can output any of them.
Examples
input
12
output
4 8
input
15
output
6 9
input
23
output
8 15
input
1000000
output
500000 500000
Note
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output “6 6” or “8 4” as well.
In the second example, 15 = 6 + 9. Note that you can’t output “1 14” because 1 is not a composite number.
Solution:
#include <cstring>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <memory.h>
#include <cassert>
using namespace std;
int main() {
int n;
scanf("%d", &n);
if (n % 2 == 0) printf("%d %d\n", 4, n - 4);
else printf("%d %d\n", 9, n - 9);
return 0;
}