Hands-On Machine Learning with Scikit-Learn and TensorFlow – Aurelien Geron

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.

By using concrete examples, minimal theory, and two production-ready Python frameworks—SciI‹it-Learn and TensorFlow—authorAurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a rangeoftechniques, starting with simple linear regression and progressing to deep neural networI‹s. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.

  • Explore the machine learning landscape, particularly neural nets
  • Use Scikit-Learn to track an example machine learning project end-to-end
  • Explore several training mr<lels, including support vector machines, decision trees, random forests, and ensemble methods
  • Use the TensorFlow library to build and train neural nets
  • Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforœment learning
  • Learn techniques for training and scaling deep neural nets
  • Apply practical œde exampleswithoutacquiringexcessive machine learning theory or algorithm details

Related posts:

Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
R Deep Learning Essentials - Dr. Joshua F.Wiley
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
An introduction to neural networks - Kevin Gurney & University of Sheffield
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Introduction to Scientific Programming with Python - Joakim Sundnes
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
The hundred-page Machine Learning Book - Andriy Burkov
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Java Deep Learning Essentials - Yusuke Sugomori
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Amazon Machine Learning Developer Guild Version Latest
Learn Keras for Deep Neural Networks - Jojo Moolayil
Deep Learning in Python - LazyProgrammer
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Deep Learning with Python - Francois Cholletf
Introduction to the Math of Neural Networks - Jeff Heaton