Data Science and Big Data Analytics – EMC Education Services

Technological advances and the associated changes in practical daily life have produced a rapidly expanding “parallel universe” of new content, new data, and new information sources all around us. Regardless of how one defines it, the phenomenon of Big Data is ever more present, ever more pervasive, and ever more important. There is enormous value potential in Big Data: innovative insights, improved understanding of problems, and countless opportunities to predict—and even to shape—the future. Data Science is the principal means to discover and tap that potential. Data Science provides ways to deal with and benefit from Big Data: to see patterns, to discover relationships, and to make sense of stunningly varied images and information. Not everyone has studied statistical analysis at a deep level. People with advanced degrees in applied mathematics are not a commodity.

Relatively few organizations have committed resources to large collections of data gathered primarily for the purpose of exploratory analysis. And yet, while applying the practices of Data Science to Big Data is a valuable differentiating strategy at present, it will be a standard core competency in the not so distant future. How does an organization operationalize quickly to take advantage of this trend? We’ve created this book for that exact purpose. EMC Education Services has been listening to the industry and organizations, observing the multi-faceted transformation of the technology landscape, and doing direct research in order to create curriculum and content to help individuals and organizations transform themselves. For the domain of Data Science and Big Data Analytics, our educational strategy balances three things: people especially in the context of data science teams, processes such
as the analytic lifecycle approach presented in this book, and tools and technologies in this case with the emphasis on proven analytic tools. So let us help you capitalize on this new “parallel universe” that surrounds us. We invite you to learn about Data Science and Big Data Analytics through this book and hope it significantly accelerates your efforts in the transformational process.

Related posts:

Python Machine Learning Eqution Reference - Sebastian Raschka
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Deep Learning with Hadoop - Dipayan Dev
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Deep Learning for Natural Language Processing - Jason Brownlee
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Deep Learning with Python - Francois Cholletf
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Deep Learning with Python - Francois Chollet
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
An introduction to neural networks - Kevin Gurney & University of Sheffield
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Python Machine Learning - Sebastian Raschka
Python Deep Learning Cookbook - Indra den Bakker
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Artificial Intelligence by example - Denis Rothman
Neural Networks - A visual introduction for beginners - Michael Taylor
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli