Table of Contents
In this tutorial, you will learn what a B+ tree is. Also, you will find working examples of searching operation on a B+ tree in C, C++, Java and Python.
A B+ tree is an advanced form of a self-balancing tree in which all the values are present in the leaf level.
An important concept to be understood before learning B+ tree is multilevel indexing. In multilevel indexing, the index of indices is created as in figure below. It makes accessing the data easier and faster.

1. Properties of a B+ Tree
- All leaves are at the same level.
- The root has at least two children.
- Each node except root can have a maximum of m children and at least m/2 children.
- Each node can contain a maximum of m – 1 keys and a minimum of ⌈m/2⌉ – 1 keys.
2. Comparison between a B-tree and a B+ Tree


The data pointers are present only at the leaf nodes on a B+ tree whereas the data pointers are present in the internal, leaf or root nodes on a B-tree.
The leaves are not connected with each other on a B-tree whereas they are connected on a B+ tree.
Operations on a B+ tree are faster than on a B-tree.
3. Searching on a B+ Tree
The following steps are followed to search for data in a B+ Tree of order m. Let the data to be searched be k.
- Start from the root node. Compare k with the keys at the root node [k1, k2, k3,……km – 1].
- If k < k1, go to the left child of the root node.
- Else if k == k1, compare k2. If
k < k
2
, k lies between k1 and k2. So, search in the left child of k2. - If k > k2, go for k3, k4,…km-1 as in steps 2 and 3.
- Repeat the above steps until a leaf node is reached.
- If k exists in the leaf node, return true else return false.
4. Searching Example on a B+ Tree
Let us search k = 45 on the following B+ tree.

Compare k with the root node.
k is not found at the root
Since k > 25, go to the right child.
Go to right of the root
Compare k with 35. Since k > 30, compare k with 45.
k not found
Since k ≥ 45, so go to the right child.
go to the right
k is found.
k is found
5. Python, Java and C/C++ Examples
Source code by Python Language:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | # B+ tee in python import math # Node creation class Node: def __init__( self , order): self .order = order self .values = [] self .keys = [] self .nextKey = None self .parent = None self .check_leaf = False # Insert at the leaf def insert_at_leaf( self , leaf, value, key): if ( self .values): temp1 = self .values for i in range ( len (temp1)): if (value = = temp1[i]): self .keys[i].append(key) break elif (value < temp1[i]): self .values = self .values[:i] + [value] + self .values[i:] self .keys = self .keys[:i] + [[key]] + self .keys[i:] break elif (i + 1 = = len (temp1)): self .values.append(value) self .keys.append([key]) break else : self .values = [value] self .keys = [[key]] # B plus tree class BplusTree: def __init__( self , order): self .root = Node(order) self .root.check_leaf = True # Insert operation def insert( self , value, key): value = str (value) old_node = self .search(value) old_node.insert_at_leaf(old_node, value, key) if ( len (old_node.values) = = old_node.order): node1 = Node(old_node.order) node1.check_leaf = True node1.parent = old_node.parent mid = int (math.ceil(old_node.order / 2 )) - 1 node1.values = old_node.values[mid + 1 :] node1.keys = old_node.keys[mid + 1 :] node1.nextKey = old_node.nextKey old_node.values = old_node.values[:mid + 1 ] old_node.keys = old_node.keys[:mid + 1 ] old_node.nextKey = node1 self .insert_in_parent(old_node, node1.values[ 0 ], node1) # Search operation for different operations def search( self , value): current_node = self .root while (current_node.check_leaf = = False ): temp2 = current_node.values for i in range ( len (temp2)): if (value = = temp2[i]): current_node = current_node.keys[i + 1 ] break elif (value < temp2[i]): current_node = current_node.keys[i] break elif (i + 1 = = len (current_node.values)): current_node = current_node.keys[i + 1 ] break return current_node # Find the node def find( self , value, key): l = self .search(value) for i, item in enumerate (l.values): if item = = value: if key in l.keys[i]: return True else : return False return False # Inserting at the parent def insert_in_parent( self , n, value, ndash): if ( self .root = = n): rootNode = Node(n.order) rootNode.values = [value] rootNode.keys = [n, ndash] self .root = rootNode n.parent = rootNode ndash.parent = rootNode return parentNode = n.parent temp3 = parentNode.keys for i in range ( len (temp3)): if (temp3[i] = = n): parentNode.values = parentNode.values[:i] + \ [value] + parentNode.values[i:] parentNode.keys = parentNode.keys[:i + 1 ] + [ndash] + parentNode.keys[i + 1 :] if ( len (parentNode.keys) > parentNode.order): parentdash = Node(parentNode.order) parentdash.parent = parentNode.parent mid = int (math.ceil(parentNode.order / 2 )) - 1 parentdash.values = parentNode.values[mid + 1 :] parentdash.keys = parentNode.keys[mid + 1 :] value_ = parentNode.values[mid] if (mid = = 0 ): parentNode.values = parentNode.values[:mid + 1 ] else : parentNode.values = parentNode.values[:mid] parentNode.keys = parentNode.keys[:mid + 1 ] for j in parentNode.keys: j.parent = parentNode for j in parentdash.keys: j.parent = parentdash self .insert_in_parent(parentNode, value_, parentdash) # Delete a node def delete( self , value, key): node_ = self .search(value) temp = 0 for i, item in enumerate (node_.values): if item = = value: temp = 1 if key in node_.keys[i]: if len (node_.keys[i]) > 1 : node_.keys[i].pop(node_.keys[i].index(key)) elif node_ = = self .root: node_.values.pop(i) node_.keys.pop(i) else : node_.keys[i].pop(node_.keys[i].index(key)) del node_.keys[i] node_.values.pop(node_.values.index(value)) self .deleteEntry(node_, value, key) else : print ( "Value not in Key" ) return if temp = = 0 : print ( "Value not in Tree" ) return # Delete an entry def deleteEntry( self , node_, value, key): if not node_.check_leaf: for i, item in enumerate (node_.keys): if item = = key: node_.keys.pop(i) break for i, item in enumerate (node_.values): if item = = value: node_.values.pop(i) break if self .root = = node_ and len (node_.keys) = = 1 : self .root = node_.keys[ 0 ] node_.keys[ 0 ].parent = None del node_ return elif ( len (node_.keys) < int (math.ceil(node_.order / 2 )) and node_.check_leaf = = False ) or ( len (node_.values) < int (math.ceil((node_.order - 1 ) / 2 )) and node_.check_leaf = = True ): is_predecessor = 0 parentNode = node_.parent PrevNode = - 1 NextNode = - 1 PrevK = - 1 PostK = - 1 for i, item in enumerate (parentNode.keys): if item = = node_: if i > 0 : PrevNode = parentNode.keys[i - 1 ] PrevK = parentNode.values[i - 1 ] if i < len (parentNode.keys) - 1 : NextNode = parentNode.keys[i + 1 ] PostK = parentNode.values[i] if PrevNode = = - 1 : ndash = NextNode value_ = PostK elif NextNode = = - 1 : is_predecessor = 1 ndash = PrevNode value_ = PrevK else : if len (node_.values) + len (NextNode.values) < node_.order: ndash = NextNode value_ = PostK else : is_predecessor = 1 ndash = PrevNode value_ = PrevK if len (node_.values) + len (ndash.values) < node_.order: if is_predecessor = = 0 : node_, ndash = ndash, node_ ndash.keys + = node_.keys if not node_.check_leaf: ndash.values.append(value_) else : ndash.nextKey = node_.nextKey ndash.values + = node_.values if not ndash.check_leaf: for j in ndash.keys: j.parent = ndash self .deleteEntry(node_.parent, value_, node_) del node_ else : if is_predecessor = = 1 : if not node_.check_leaf: ndashpm = ndash.keys.pop( - 1 ) ndashkm_1 = ndash.values.pop( - 1 ) node_.keys = [ndashpm] + node_.keys node_.values = [value_] + node_.values parentNode = node_.parent for i, item in enumerate (parentNode.values): if item = = value_: p.values[i] = ndashkm_1 break else : ndashpm = ndash.keys.pop( - 1 ) ndashkm = ndash.values.pop( - 1 ) node_.keys = [ndashpm] + node_.keys node_.values = [ndashkm] + node_.values parentNode = node_.parent for i, item in enumerate (p.values): if item = = value_: parentNode.values[i] = ndashkm break else : if not node_.check_leaf: ndashp0 = ndash.keys.pop( 0 ) ndashk0 = ndash.values.pop( 0 ) node_.keys = node_.keys + [ndashp0] node_.values = node_.values + [value_] parentNode = node_.parent for i, item in enumerate (parentNode.values): if item = = value_: parentNode.values[i] = ndashk0 break else : ndashp0 = ndash.keys.pop( 0 ) ndashk0 = ndash.values.pop( 0 ) node_.keys = node_.keys + [ndashp0] node_.values = node_.values + [ndashk0] parentNode = node_.parent for i, item in enumerate (parentNode.values): if item = = value_: parentNode.values[i] = ndash.values[ 0 ] break if not ndash.check_leaf: for j in ndash.keys: j.parent = ndash if not node_.check_leaf: for j in node_.keys: j.parent = node_ if not parentNode.check_leaf: for j in parentNode.keys: j.parent = parentNode # Print the tree def printTree(tree): lst = [tree.root] level = [ 0 ] leaf = None flag = 0 lev_leaf = 0 node1 = Node( str (level[ 0 ]) + str (tree.root.values)) while ( len (lst) ! = 0 ): x = lst.pop( 0 ) lev = level.pop( 0 ) if (x.check_leaf = = False ): for i, item in enumerate (x.keys): print (item.values) else : for i, item in enumerate (x.keys): print (item.values) if (flag = = 0 ): lev_leaf = lev leaf = x flag = 1 record_len = 3 bplustree = BplusTree(record_len) bplustree.insert( '5' , '33' ) bplustree.insert( '15' , '21' ) bplustree.insert( '25' , '31' ) bplustree.insert( '35' , '41' ) bplustree.insert( '45' , '10' ) printTree(bplustree) if (bplustree.find( '5' , '34' )): print ( "Found" ) else : print ( "Not found" ) |
Source code by Java Language:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 | // Searching on a B+ tree in Java import java.util.*; public class BPlusTree { int m; InternalNode root; LeafNode firstLeaf; // Binary search program private int binarySearch(DictionaryPair[] dps, int numPairs, int t) { Comparator<DictionaryPair> c = new Comparator<DictionaryPair>() { @Override public int compare(DictionaryPair o1, DictionaryPair o2) { Integer a = Integer.valueOf(o1.key); Integer b = Integer.valueOf(o2.key); return a.compareTo(b); } }; return Arrays.binarySearch(dps, 0 , numPairs, new DictionaryPair(t, 0 ), c); } // Find the leaf node private LeafNode findLeafNode( int key) { Integer[] keys = this .root.keys; int i; for (i = 0 ; i < this .root.degree - 1 ; i++) { if (key < keys[i]) { break ; } } Node child = this .root.childPointers[i]; if (child instanceof LeafNode) { return (LeafNode) child; } else { return findLeafNode((InternalNode) child, key); } } // Find the leaf node private LeafNode findLeafNode(InternalNode node, int key) { Integer[] keys = node.keys; int i; for (i = 0 ; i < node.degree - 1 ; i++) { if (key < keys[i]) { break ; } } Node childNode = node.childPointers[i]; if (childNode instanceof LeafNode) { return (LeafNode) childNode; } else { return findLeafNode((InternalNode) node.childPointers[i], key); } } // Finding the index of the pointer private int findIndexOfPointer(Node[] pointers, LeafNode node) { int i; for (i = 0 ; i < pointers.length; i++) { if (pointers[i] == node) { break ; } } return i; } // Get the mid point private int getMidpoint() { return ( int ) Math.ceil(( this .m + 1 ) / 2.0 ) - 1 ; } // Balance the tree private void handleDeficiency(InternalNode in) { InternalNode sibling; InternalNode parent = in.parent; if ( this .root == in) { for ( int i = 0 ; i < in.childPointers.length; i++) { if (in.childPointers[i] != null ) { if (in.childPointers[i] instanceof InternalNode) { this .root = (InternalNode) in.childPointers[i]; this .root.parent = null ; } else if (in.childPointers[i] instanceof LeafNode) { this .root = null ; } } } } else if (in.leftSibling != null && in.leftSibling.isLendable()) { sibling = in.leftSibling; } else if (in.rightSibling != null && in.rightSibling.isLendable()) { sibling = in.rightSibling; int borrowedKey = sibling.keys[ 0 ]; Node pointer = sibling.childPointers[ 0 ]; in.keys[in.degree - 1 ] = parent.keys[ 0 ]; in.childPointers[in.degree] = pointer; parent.keys[ 0 ] = borrowedKey; sibling.removePointer( 0 ); Arrays.sort(sibling.keys); sibling.removePointer( 0 ); shiftDown(in.childPointers, 1 ); } else if (in.leftSibling != null && in.leftSibling.isMergeable()) { } else if (in.rightSibling != null && in.rightSibling.isMergeable()) { sibling = in.rightSibling; sibling.keys[sibling.degree - 1 ] = parent.keys[parent.degree - 2 ]; Arrays.sort(sibling.keys, 0 , sibling.degree); parent.keys[parent.degree - 2 ] = null ; for ( int i = 0 ; i < in.childPointers.length; i++) { if (in.childPointers[i] != null ) { sibling.prependChildPointer(in.childPointers[i]); in.childPointers[i].parent = sibling; in.removePointer(i); } } parent.removePointer(in); sibling.leftSibling = in.leftSibling; } if (parent != null && parent.isDeficient()) { handleDeficiency(parent); } } private boolean isEmpty() { return firstLeaf == null ; } private int linearNullSearch(DictionaryPair[] dps) { for ( int i = 0 ; i < dps.length; i++) { if (dps[i] == null ) { return i; } } return - 1 ; } private int linearNullSearch(Node[] pointers) { for ( int i = 0 ; i < pointers.length; i++) { if (pointers[i] == null ) { return i; } } return - 1 ; } private void shiftDown(Node[] pointers, int amount) { Node[] newPointers = new Node[ this .m + 1 ]; for ( int i = amount; i < pointers.length; i++) { newPointers[i - amount] = pointers[i]; } pointers = newPointers; } private void sortDictionary(DictionaryPair[] dictionary) { Arrays.sort(dictionary, new Comparator<DictionaryPair>() { @Override public int compare(DictionaryPair o1, DictionaryPair o2) { if (o1 == null && o2 == null ) { return 0 ; } if (o1 == null ) { return 1 ; } if (o2 == null ) { return - 1 ; } return o1.compareTo(o2); } }); } private Node[] splitChildPointers(InternalNode in, int split) { Node[] pointers = in.childPointers; Node[] halfPointers = new Node[ this .m + 1 ]; for ( int i = split + 1 ; i < pointers.length; i++) { halfPointers[i - split - 1 ] = pointers[i]; in.removePointer(i); } return halfPointers; } private DictionaryPair[] splitDictionary(LeafNode ln, int split) { DictionaryPair[] dictionary = ln.dictionary; DictionaryPair[] halfDict = new DictionaryPair[ this .m]; for ( int i = split; i < dictionary.length; i++) { halfDict[i - split] = dictionary[i]; ln.delete(i); } return halfDict; } private void splitInternalNode(InternalNode in) { InternalNode parent = in.parent; int midpoint = getMidpoint(); int newParentKey = in.keys[midpoint]; Integer[] halfKeys = splitKeys(in.keys, midpoint); Node[] halfPointers = splitChildPointers(in, midpoint); in.degree = linearNullSearch(in.childPointers); InternalNode sibling = new InternalNode( this .m, halfKeys, halfPointers); for (Node pointer : halfPointers) { if (pointer != null ) { pointer.parent = sibling; } } sibling.rightSibling = in.rightSibling; if (sibling.rightSibling != null ) { sibling.rightSibling.leftSibling = sibling; } in.rightSibling = sibling; sibling.leftSibling = in; if (parent == null ) { Integer[] keys = new Integer[ this .m]; keys[ 0 ] = newParentKey; InternalNode newRoot = new InternalNode( this .m, keys); newRoot.appendChildPointer(in); newRoot.appendChildPointer(sibling); this .root = newRoot; in.parent = newRoot; sibling.parent = newRoot; } else { parent.keys[parent.degree - 1 ] = newParentKey; Arrays.sort(parent.keys, 0 , parent.degree); int pointerIndex = parent.findIndexOfPointer(in) + 1 ; parent.insertChildPointer(sibling, pointerIndex); sibling.parent = parent; } } private Integer[] splitKeys(Integer[] keys, int split) { Integer[] halfKeys = new Integer[ this .m]; keys[split] = null ; for ( int i = split + 1 ; i < keys.length; i++) { halfKeys[i - split - 1 ] = keys[i]; keys[i] = null ; } return halfKeys; } public void insert( int key, double value) { if (isEmpty()) { LeafNode ln = new LeafNode( this .m, new DictionaryPair(key, value)); this .firstLeaf = ln; } else { LeafNode ln = ( this .root == null ) ? this .firstLeaf : findLeafNode(key); if (!ln.insert( new DictionaryPair(key, value))) { ln.dictionary[ln.numPairs] = new DictionaryPair(key, value); ln.numPairs++; sortDictionary(ln.dictionary); int midpoint = getMidpoint(); DictionaryPair[] halfDict = splitDictionary(ln, midpoint); if (ln.parent == null ) { Integer[] parent_keys = new Integer[ this .m]; parent_keys[ 0 ] = halfDict[ 0 ].key; InternalNode parent = new InternalNode( this .m, parent_keys); ln.parent = parent; parent.appendChildPointer(ln); } else { int newParentKey = halfDict[ 0 ].key; ln.parent.keys[ln.parent.degree - 1 ] = newParentKey; Arrays.sort(ln.parent.keys, 0 , ln.parent.degree); } LeafNode newLeafNode = new LeafNode( this .m, halfDict, ln.parent); int pointerIndex = ln.parent.findIndexOfPointer(ln) + 1 ; ln.parent.insertChildPointer(newLeafNode, pointerIndex); newLeafNode.rightSibling = ln.rightSibling; if (newLeafNode.rightSibling != null ) { newLeafNode.rightSibling.leftSibling = newLeafNode; } ln.rightSibling = newLeafNode; newLeafNode.leftSibling = ln; if ( this .root == null ) { this .root = ln.parent; } else { InternalNode in = ln.parent; while (in != null ) { if (in.isOverfull()) { splitInternalNode(in); } else { break ; } in = in.parent; } } } } } public Double search( int key) { if (isEmpty()) { return null ; } LeafNode ln = ( this .root == null ) ? this .firstLeaf : findLeafNode(key); DictionaryPair[] dps = ln.dictionary; int index = binarySearch(dps, ln.numPairs, key); if (index < 0 ) { return null ; } else { return dps[index].value; } } public ArrayList<Double> search( int lowerBound, int upperBound) { ArrayList<Double> values = new ArrayList<Double>(); LeafNode currNode = this .firstLeaf; while (currNode != null ) { DictionaryPair dps[] = currNode.dictionary; for (DictionaryPair dp : dps) { if (dp == null ) { break ; } if (lowerBound <= dp.key && dp.key <= upperBound) { values.add(dp.value); } } currNode = currNode.rightSibling; } return values; } public BPlusTree( int m) { this .m = m; this .root = null ; } public class Node { InternalNode parent; } private class InternalNode extends Node { int maxDegree; int minDegree; int degree; InternalNode leftSibling; InternalNode rightSibling; Integer[] keys; Node[] childPointers; private void appendChildPointer(Node pointer) { this .childPointers[degree] = pointer; this .degree++; } private int findIndexOfPointer(Node pointer) { for ( int i = 0 ; i < childPointers.length; i++) { if (childPointers[i] == pointer) { return i; } } return - 1 ; } private void insertChildPointer(Node pointer, int index) { for ( int i = degree - 1 ; i >= index; i--) { childPointers[i + 1 ] = childPointers[i]; } this .childPointers[index] = pointer; this .degree++; } private boolean isDeficient() { return this .degree < this .minDegree; } private boolean isLendable() { return this .degree > this .minDegree; } private boolean isMergeable() { return this .degree == this .minDegree; } private boolean isOverfull() { return this .degree == maxDegree + 1 ; } private void prependChildPointer(Node pointer) { for ( int i = degree - 1 ; i >= 0 ; i--) { childPointers[i + 1 ] = childPointers[i]; } this .childPointers[ 0 ] = pointer; this .degree++; } private void removeKey( int index) { this .keys[index] = null ; } private void removePointer( int index) { this .childPointers[index] = null ; this .degree--; } private void removePointer(Node pointer) { for ( int i = 0 ; i < childPointers.length; i++) { if (childPointers[i] == pointer) { this .childPointers[i] = null ; } } this .degree--; } private InternalNode( int m, Integer[] keys) { this .maxDegree = m; this .minDegree = ( int ) Math.ceil(m / 2.0 ); this .degree = 0 ; this .keys = keys; this .childPointers = new Node[ this .maxDegree + 1 ]; } private InternalNode( int m, Integer[] keys, Node[] pointers) { this .maxDegree = m; this .minDegree = ( int ) Math.ceil(m / 2.0 ); this .degree = linearNullSearch(pointers); this .keys = keys; this .childPointers = pointers; } } public class LeafNode extends Node { int maxNumPairs; int minNumPairs; int numPairs; LeafNode leftSibling; LeafNode rightSibling; DictionaryPair[] dictionary; public void delete( int index) { this .dictionary[index] = null ; numPairs--; } public boolean insert(DictionaryPair dp) { if ( this .isFull()) { return false ; } else { this .dictionary[numPairs] = dp; numPairs++; Arrays.sort( this .dictionary, 0 , numPairs); return true ; } } public boolean isDeficient() { return numPairs < minNumPairs; } public boolean isFull() { return numPairs == maxNumPairs; } public boolean isLendable() { return numPairs > minNumPairs; } public boolean isMergeable() { return numPairs == minNumPairs; } public LeafNode( int m, DictionaryPair dp) { this .maxNumPairs = m - 1 ; this .minNumPairs = ( int ) (Math.ceil(m / 2 ) - 1 ); this .dictionary = new DictionaryPair[m]; this .numPairs = 0 ; this .insert(dp); } public LeafNode( int m, DictionaryPair[] dps, InternalNode parent) { this .maxNumPairs = m - 1 ; this .minNumPairs = ( int ) (Math.ceil(m / 2 ) - 1 ); this .dictionary = dps; this .numPairs = linearNullSearch(dps); this .parent = parent; } } public class DictionaryPair implements Comparable<DictionaryPair> { int key; double value; public DictionaryPair( int key, double value) { this .key = key; this .value = value; } public int compareTo(DictionaryPair o) { if (key == o.key) { return 0 ; } else if (key > o.key) { return 1 ; } else { return - 1 ; } } } public static void main(String[] args) { BPlusTree bpt = null ; bpt = new BPlusTree( 3 ); bpt.insert( 5 , 33 ); bpt.insert( 15 , 21 ); bpt.insert( 25 , 31 ); bpt.insert( 35 , 41 ); bpt.insert( 45 , 10 ); if (bpt.search( 15 ) != null ) { System.out.println( "Found" ); } else { System.out.println( "Not Found" ); } ; } } |
Source code by C Language:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 | // Searching on a B+ Tree in C #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> // Default order #define ORDER 3 typedef struct record { int value; } record; // Node typedef struct node { void **pointers; int *keys; struct node *parent; bool is_leaf; int num_keys; struct node *next; } node; int order = ORDER; node *queue = NULL; bool verbose_output = false ; // Enqueue void enqueue(node *new_node); // Dequeue node *dequeue( void ); int height(node * const root); int pathToLeaves(node * const root, node *child); void printLeaves(node * const root); void printTree(node * const root); void findAndPrint(node * const root, int key, bool verbose); void findAndPrintRange(node * const root, int range1, int range2, bool verbose); int findRange(node * const root, int key_start, int key_end, bool verbose, int returned_keys[], void *returned_pointers[]); node *findLeaf(node * const root, int key, bool verbose); record *find(node *root, int key, bool verbose, node **leaf_out); int cut( int length); record *makeRecord( int value); node *makeNode( void ); node *makeLeaf( void ); int getLeftIndex(node *parent, node *left); node *insertIntoLeaf(node *leaf, int key, record *pointer); node *insertIntoLeafAfterSplitting(node *root, node *leaf, int key, record *pointer); node *insertIntoNode(node *root, node *parent, int left_index, int key, node *right); node *insertIntoNodeAfterSplitting(node *root, node *parent, int left_index, int key, node *right); node *insertIntoParent(node *root, node *left, int key, node *right); node *insertIntoNewRoot(node *left, int key, node *right); node *startNewTree( int key, record *pointer); node *insert(node *root, int key, int value); // Enqueue void enqueue(node *new_node) { node *c; if (queue == NULL) { queue = new_node; queue->next = NULL; } else { c = queue; while (c->next != NULL) { c = c->next; } c->next = new_node; new_node->next = NULL; } } // Dequeue node *dequeue( void ) { node *n = queue; queue = queue->next; n->next = NULL; return n; } // Print the leaves void printLeaves(node * const root) { if (root == NULL) { printf ( "Empty tree.\n" ); return ; } int i; node *c = root; while (!c->is_leaf) c = c->pointers[0]; while ( true ) { for (i = 0; i < c->num_keys; i++) { if (verbose_output) printf ( "%p " , c->pointers[i]); printf ( "%d " , c->keys[i]); } if (verbose_output) printf ( "%p " , c->pointers[order - 1]); if (c->pointers[order - 1] != NULL) { printf ( " | " ); c = c->pointers[order - 1]; } else break ; } printf ( "\n" ); } // Calculate height int height(node * const root) { int h = 0; node *c = root; while (!c->is_leaf) { c = c->pointers[0]; h++; } return h; } // Get path to root int pathToLeaves(node * const root, node *child) { int length = 0; node *c = child; while (c != root) { c = c->parent; length++; } return length; } // Print the tree void printTree(node * const root) { node *n = NULL; int i = 0; int rank = 0; int new_rank = 0; if (root == NULL) { printf ( "Empty tree.\n" ); return ; } queue = NULL; enqueue(root); while (queue != NULL) { n = dequeue(); if (n->parent != NULL && n == n->parent->pointers[0]) { new_rank = pathToLeaves(root, n); if (new_rank != rank) { rank = new_rank; printf ( "\n" ); } } if (verbose_output) printf ( "(%p)" , n); for (i = 0; i < n->num_keys; i++) { if (verbose_output) printf ( "%p " , n->pointers[i]); printf ( "%d " , n->keys[i]); } if (!n->is_leaf) for (i = 0; i <= n->num_keys; i++) enqueue(n->pointers[i]); if (verbose_output) { if (n->is_leaf) printf ( "%p " , n->pointers[order - 1]); else printf ( "%p " , n->pointers[n->num_keys]); } printf ( "| " ); } printf ( "\n" ); } // Find the node and print it void findAndPrint(node * const root, int key, bool verbose) { node *leaf = NULL; record *r = find(root, key, verbose, NULL); if (r == NULL) printf ( "Record not found under key %d.\n" , key); else printf ( "Record at %p -- key %d, value %d.\n" , r, key, r->value); } // Find and print the range void findAndPrintRange(node * const root, int key_start, int key_end, bool verbose) { int i; int array_size = key_end - key_start + 1; int returned_keys[array_size]; void *returned_pointers[array_size]; int num_found = findRange(root, key_start, key_end, verbose, returned_keys, returned_pointers); if (!num_found) printf ( "None found.\n" ); else { for (i = 0; i < num_found; i++) printf ( "Key: %d Location: %p Value: %d\n" , returned_keys[i], returned_pointers[i], ((record *) returned_pointers[i]) ->value); } } // Find the range int findRange(node * const root, int key_start, int key_end, bool verbose, int returned_keys[], void *returned_pointers[]) { int i, num_found; num_found = 0; node *n = findLeaf(root, key_start, verbose); if (n == NULL) return 0; for (i = 0; i < n->num_keys && n->keys[i] < key_start; i++) ; if (i == n->num_keys) return 0; while (n != NULL) { for (; i < n->num_keys && n->keys[i] <= key_end; i++) { returned_keys[num_found] = n->keys[i]; returned_pointers[num_found] = n->pointers[i]; num_found++; } n = n->pointers[order - 1]; i = 0; } return num_found; } // Find the leaf node *findLeaf(node * const root, int key, bool verbose) { if (root == NULL) { if (verbose) printf ( "Empty tree.\n" ); return root; } int i = 0; node *c = root; while (!c->is_leaf) { if (verbose) { printf ( "[" ); for (i = 0; i < c->num_keys - 1; i++) printf ( "%d " , c->keys[i]); printf ( "%d] " , c->keys[i]); } i = 0; while (i < c->num_keys) { if (key >= c->keys[i]) i++; else break ; } if (verbose) printf ( "%d ->\n" , i); c = (node *)c->pointers[i]; } if (verbose) { printf ( "Leaf [" ); for (i = 0; i < c->num_keys - 1; i++) printf ( "%d " , c->keys[i]); printf ( "%d] ->\n" , c->keys[i]); } return c; } record *find(node *root, int key, bool verbose, node **leaf_out) { if (root == NULL) { if (leaf_out != NULL) { *leaf_out = NULL; } return NULL; } int i = 0; node *leaf = NULL; leaf = findLeaf(root, key, verbose); for (i = 0; i < leaf->num_keys; i++) if (leaf->keys[i] == key) break ; if (leaf_out != NULL) { *leaf_out = leaf; } if (i == leaf->num_keys) return NULL; else return (record *)leaf->pointers[i]; } int cut( int length) { if (length % 2 == 0) return length / 2; else return length / 2 + 1; } record *makeRecord( int value) { record *new_record = (record *) malloc ( sizeof (record)); if (new_record == NULL) { perror ( "Record creation." ); exit (EXIT_FAILURE); } else { new_record->value = value; } return new_record; } node *makeNode( void ) { node *new_node; new_node = malloc ( sizeof (node)); if (new_node == NULL) { perror ( "Node creation." ); exit (EXIT_FAILURE); } new_node->keys = malloc ((order - 1) * sizeof ( int )); if (new_node->keys == NULL) { perror ( "New node keys array." ); exit (EXIT_FAILURE); } new_node->pointers = malloc (order * sizeof ( void *)); if (new_node->pointers == NULL) { perror ( "New node pointers array." ); exit (EXIT_FAILURE); } new_node->is_leaf = false ; new_node->num_keys = 0; new_node->parent = NULL; new_node->next = NULL; return new_node; } node *makeLeaf( void ) { node *leaf = makeNode(); leaf->is_leaf = true ; return leaf; } int getLeftIndex(node *parent, node *left) { int left_index = 0; while (left_index <= parent->num_keys && parent->pointers[left_index] != left) left_index++; return left_index; } node *insertIntoLeaf(node *leaf, int key, record *pointer) { int i, insertion_point; insertion_point = 0; while (insertion_point < leaf->num_keys && leaf->keys[insertion_point] < key) insertion_point++; for (i = leaf->num_keys; i > insertion_point; i--) { leaf->keys[i] = leaf->keys[i - 1]; leaf->pointers[i] = leaf->pointers[i - 1]; } leaf->keys[insertion_point] = key; leaf->pointers[insertion_point] = pointer; leaf->num_keys++; return leaf; } node *insertIntoLeafAfterSplitting(node *root, node *leaf, int key, record *pointer) { node *new_leaf; int *temp_keys; void **temp_pointers; int insertion_index, split, new_key, i, j; new_leaf = makeLeaf(); temp_keys = malloc (order * sizeof ( int )); if (temp_keys == NULL) { perror ( "Temporary keys array." ); exit (EXIT_FAILURE); } temp_pointers = malloc (order * sizeof ( void *)); if (temp_pointers == NULL) { perror ( "Temporary pointers array." ); exit (EXIT_FAILURE); } insertion_index = 0; while (insertion_index < order - 1 && leaf->keys[insertion_index] < key) insertion_index++; for (i = 0, j = 0; i < leaf->num_keys; i++, j++) { if (j == insertion_index) j++; temp_keys[j] = leaf->keys[i]; temp_pointers[j] = leaf->pointers[i]; } temp_keys[insertion_index] = key; temp_pointers[insertion_index] = pointer; leaf->num_keys = 0; split = cut(order - 1); for (i = 0; i < split; i++) { leaf->pointers[i] = temp_pointers[i]; leaf->keys[i] = temp_keys[i]; leaf->num_keys++; } for (i = split, j = 0; i < order; i++, j++) { new_leaf->pointers[j] = temp_pointers[i]; new_leaf->keys[j] = temp_keys[i]; new_leaf->num_keys++; } free (temp_pointers); free (temp_keys); new_leaf->pointers[order - 1] = leaf->pointers[order - 1]; leaf->pointers[order - 1] = new_leaf; for (i = leaf->num_keys; i < order - 1; i++) leaf->pointers[i] = NULL; for (i = new_leaf->num_keys; i < order - 1; i++) new_leaf->pointers[i] = NULL; new_leaf->parent = leaf->parent; new_key = new_leaf->keys[0]; return insertIntoParent(root, leaf, new_key, new_leaf); } node *insertIntoNode(node *root, node *n, int left_index, int key, node *right) { int i; for (i = n->num_keys; i > left_index; i--) { n->pointers[i + 1] = n->pointers[i]; n->keys[i] = n->keys[i - 1]; } n->pointers[left_index + 1] = right; n->keys[left_index] = key; n->num_keys++; return root; } node *insertIntoNodeAfterSplitting(node *root, node *old_node, int left_index, int key, node *right) { int i, j, split, k_prime; node *new_node, *child; int *temp_keys; node **temp_pointers; temp_pointers = malloc ((order + 1) * sizeof (node *)); if (temp_pointers == NULL) { exit (EXIT_FAILURE); } temp_keys = malloc (order * sizeof ( int )); if (temp_keys == NULL) { exit (EXIT_FAILURE); } for (i = 0, j = 0; i < old_node->num_keys + 1; i++, j++) { if (j == left_index + 1) j++; temp_pointers[j] = old_node->pointers[i]; } for (i = 0, j = 0; i < old_node->num_keys; i++, j++) { if (j == left_index) j++; temp_keys[j] = old_node->keys[i]; } temp_pointers[left_index + 1] = right; temp_keys[left_index] = key; split = cut(order); new_node = makeNode(); old_node->num_keys = 0; for (i = 0; i < split - 1; i++) { old_node->pointers[i] = temp_pointers[i]; old_node->keys[i] = temp_keys[i]; old_node->num_keys++; } old_node->pointers[i] = temp_pointers[i]; k_prime = temp_keys[split - 1]; for (++i, j = 0; i < order; i++, j++) { new_node->pointers[j] = temp_pointers[i]; new_node->keys[j] = temp_keys[i]; new_node->num_keys++; } new_node->pointers[j] = temp_pointers[i]; free (temp_pointers); free (temp_keys); new_node->parent = old_node->parent; for (i = 0; i <= new_node->num_keys; i++) { child = new_node->pointers[i]; child->parent = new_node; } return insertIntoParent(root, old_node, k_prime, new_node); } node *insertIntoParent(node *root, node *left, int key, node *right) { int left_index; node *parent; parent = left->parent; if (parent == NULL) return insertIntoNewRoot(left, key, right); left_index = getLeftIndex(parent, left); if (parent->num_keys < order - 1) return insertIntoNode(root, parent, left_index, key, right); return insertIntoNodeAfterSplitting(root, parent, left_index, key, right); } node *insertIntoNewRoot(node *left, int key, node *right) { node *root = makeNode(); root->keys[0] = key; root->pointers[0] = left; root->pointers[1] = right; root->num_keys++; root->parent = NULL; left->parent = root; right->parent = root; return root; } node *startNewTree( int key, record *pointer) { node *root = makeLeaf(); root->keys[0] = key; root->pointers[0] = pointer; root->pointers[order - 1] = NULL; root->parent = NULL; root->num_keys++; return root; } node *insert(node *root, int key, int value) { record *record_pointer = NULL; node *leaf = NULL; record_pointer = find(root, key, false , NULL); if (record_pointer != NULL) { record_pointer->value = value; return root; } record_pointer = makeRecord(value); if (root == NULL) return startNewTree(key, record_pointer); leaf = findLeaf(root, key, false ); if (leaf->num_keys < order - 1) { leaf = insertIntoLeaf(leaf, key, record_pointer); return root; } return insertIntoLeafAfterSplitting(root, leaf, key, record_pointer); } int main() { node *root; char instruction; root = NULL; root = insert(root, 5, 33); root = insert(root, 15, 21); root = insert(root, 25, 31); root = insert(root, 35, 41); root = insert(root, 45, 10); printTree(root); findAndPrint(root, 15, instruction = 'a' ); } |
Source code by C++ Language:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | // Searching on a B+ tree in C++ #include <climits> #include <fstream> #include <iostream> #include <sstream> using namespace std; int MAX = 3; // BP node class Node { bool IS_LEAF; int *key, size; Node **ptr; friend class BPTree; public : Node(); }; // BP tree class BPTree { Node *root; void insertInternal( int , Node *, Node *); Node *findParent(Node *, Node *); public : BPTree(); void search( int ); void insert( int ); void display(Node *); Node *getRoot(); }; Node::Node() { key = new int [MAX]; ptr = new Node *[MAX + 1]; } BPTree::BPTree() { root = NULL; } // Search operation void BPTree::search( int x) { if (root == NULL) { cout << "Tree is empty\n" ; } else { Node *cursor = root; while (cursor->IS_LEAF == false ) { for ( int i = 0; i < cursor->size; i++) { if (x < cursor->key[i]) { cursor = cursor->ptr[i]; break ; } if (i == cursor->size - 1) { cursor = cursor->ptr[i + 1]; break ; } } } for ( int i = 0; i < cursor->size; i++) { if (cursor->key[i] == x) { cout << "Found\n" ; return ; } } cout << "Not found\n" ; } } // Insert Operation void BPTree::insert( int x) { if (root == NULL) { root = new Node; root->key[0] = x; root->IS_LEAF = true ; root->size = 1; } else { Node *cursor = root; Node *parent; while (cursor->IS_LEAF == false ) { parent = cursor; for ( int i = 0; i < cursor->size; i++) { if (x < cursor->key[i]) { cursor = cursor->ptr[i]; break ; } if (i == cursor->size - 1) { cursor = cursor->ptr[i + 1]; break ; } } } if (cursor->size < MAX) { int i = 0; while (x > cursor->key[i] && i < cursor->size) i++; for ( int j = cursor->size; j > i; j--) { cursor->key[j] = cursor->key[j - 1]; } cursor->key[i] = x; cursor->size++; cursor->ptr[cursor->size] = cursor->ptr[cursor->size - 1]; cursor->ptr[cursor->size - 1] = NULL; } else { Node *newLeaf = new Node; int virtualNode[MAX + 1]; for ( int i = 0; i < MAX; i++) { virtualNode[i] = cursor->key[i]; } int i = 0, j; while (x > virtualNode[i] && i < MAX) i++; for ( int j = MAX + 1; j > i; j--) { virtualNode[j] = virtualNode[j - 1]; } virtualNode[i] = x; newLeaf->IS_LEAF = true ; cursor->size = (MAX + 1) / 2; newLeaf->size = MAX + 1 - (MAX + 1) / 2; cursor->ptr[cursor->size] = newLeaf; newLeaf->ptr[newLeaf->size] = cursor->ptr[MAX]; cursor->ptr[MAX] = NULL; for (i = 0; i < cursor->size; i++) { cursor->key[i] = virtualNode[i]; } for (i = 0, j = cursor->size; i < newLeaf->size; i++, j++) { newLeaf->key[i] = virtualNode[j]; } if (cursor == root) { Node *newRoot = new Node; newRoot->key[0] = newLeaf->key[0]; newRoot->ptr[0] = cursor; newRoot->ptr[1] = newLeaf; newRoot->IS_LEAF = false ; newRoot->size = 1; root = newRoot; } else { insertInternal(newLeaf->key[0], parent, newLeaf); } } } } // Insert Operation void BPTree::insertInternal( int x, Node *cursor, Node *child) { if (cursor->size < MAX) { int i = 0; while (x > cursor->key[i] && i < cursor->size) i++; for ( int j = cursor->size; j > i; j--) { cursor->key[j] = cursor->key[j - 1]; } for ( int j = cursor->size + 1; j > i + 1; j--) { cursor->ptr[j] = cursor->ptr[j - 1]; } cursor->key[i] = x; cursor->size++; cursor->ptr[i + 1] = child; } else { Node *newInternal = new Node; int virtualKey[MAX + 1]; Node *virtualPtr[MAX + 2]; for ( int i = 0; i < MAX; i++) { virtualKey[i] = cursor->key[i]; } for ( int i = 0; i < MAX + 1; i++) { virtualPtr[i] = cursor->ptr[i]; } int i = 0, j; while (x > virtualKey[i] && i < MAX) i++; for ( int j = MAX + 1; j > i; j--) { virtualKey[j] = virtualKey[j - 1]; } virtualKey[i] = x; for ( int j = MAX + 2; j > i + 1; j--) { virtualPtr[j] = virtualPtr[j - 1]; } virtualPtr[i + 1] = child; newInternal->IS_LEAF = false ; cursor->size = (MAX + 1) / 2; newInternal->size = MAX - (MAX + 1) / 2; for (i = 0, j = cursor->size + 1; i < newInternal->size; i++, j++) { newInternal->key[i] = virtualKey[j]; } for (i = 0, j = cursor->size + 1; i < newInternal->size + 1; i++, j++) { newInternal->ptr[i] = virtualPtr[j]; } if (cursor == root) { Node *newRoot = new Node; newRoot->key[0] = cursor->key[cursor->size]; newRoot->ptr[0] = cursor; newRoot->ptr[1] = newInternal; newRoot->IS_LEAF = false ; newRoot->size = 1; root = newRoot; } else { insertInternal(cursor->key[cursor->size], findParent(root, cursor), newInternal); } } } // Find the parent Node *BPTree::findParent(Node *cursor, Node *child) { Node *parent; if (cursor->IS_LEAF || (cursor->ptr[0])->IS_LEAF) { return NULL; } for ( int i = 0; i < cursor->size + 1; i++) { if (cursor->ptr[i] == child) { parent = cursor; return parent; } else { parent = findParent(cursor->ptr[i], child); if (parent != NULL) return parent; } } return parent; } // Print the tree void BPTree::display(Node *cursor) { if (cursor != NULL) { for ( int i = 0; i < cursor->size; i++) { cout << cursor->key[i] << " " ; } cout << "\n" ; if (cursor->IS_LEAF != true ) { for ( int i = 0; i < cursor->size + 1; i++) { display(cursor->ptr[i]); } } } } // Get the root Node *BPTree::getRoot() { return root; } int main() { BPTree node; node.insert(5); node.insert(15); node.insert(25); node.insert(35); node.insert(45); node.insert(55); node.insert(40); node.insert(30); node.insert(20); node.display(node.getRoot()); node.search(15); } |
6. Search Complexity
6.1. Time Complexity
If linear search is implemented inside a node, then total complexity is Θ(logt n).
If binary search is used, then total complexity is Θ(log2t.logt n).
6.2. B+ Tree Applications
- Multilevel Indexing
- Faster operations on the tree (insertion, deletion, search)
- Database indexing