Table of Contents
In this tutorial, you will learn how a new node can be inserted into a red-black tree is. Also, you will find working examples of insertions performed on a red-black tree in C, C++, Java and Python.
Red-Black tree is a self-balancing binary search tree in which each node contains an extra bit for denoting the color of the node, either red or black.
Before reading this article, please refer to the article on red-black tree.
While inserting a new node, the new node is always inserted as a RED node. After insertion of a new node, if the tree is violating the properties of the red-black tree then, we do the following operations.
- Recolor
- Rotation
1. Algorithm to Insert a New Node
Following steps are followed for inserting a new element into a red-black tree:
The newNode
be:
New node
Let y be the leaf (ie. NIL
) and x
be the root of the tree. The new node is inserted in the following tree.
Initial tree
Check if the tree is empty (ie. whether x
is NIL
). If yes, insert newNode
as a root node and color it black.
Else, repeat steps following steps until leaf (NIL
) is reached.
Compare newKey
with rootKey
.
If newKey
is greater than rootKey
, traverse through the right subtree.
Else traverse through the left subtree.
Path leading to the node where newNode is to be inserted
Assign the parent of the leaf as parent of newNode
.
If leafKey
is greater than newKey
, make newNode
as rightChild
.
Else, make newNode
as leftChild
.
New node inserted
Assign NULL
to the left and rightChild
of newNode
.
Assign RED color to newNode
.
Set the color of the newNode red and assign null to the children
Call InsertFix-algorithm to maintain the property of red-black tree if violated.
Why newly inserted nodes are always red in a red-black tree?
This is because inserting a red node does not violate the depth property of a red-black tree.
If you attach a red node to a red node, then the rule is violated but it is easier to fix this problem than the problem introduced by violating the depth property.
2. Algorithm to Maintain Red-Black Property After Insertion
This algorithm is used for maintaining the property of a red-black tree if insertion of a newNode violates this property.
Do the following until the parent of newNode
p
is RED.
If p
is the left child of grandParent
gP
of newNode
, do the following.
Case-I:
If the color of the right child of gP
of newNode
is RED, set the color of both the children of gP
as BLACK and the color of gP
as RED.
Color change
Assign gP
to newNode
.
Reassigning newNode
Case-II:
(Before moving on to this step, while loop is checked. If conditions are not satisfied, it the loop is broken.)
Else if newNode
is the right child of p
then, assign p
to newNode
.
Assigning parent of newNode as newNode
Left-Rotate newNode
.
Left Rotate
Case-III:
(Before moving on to this step, while loop is checked. If conditions are not satisfied, it the loop is broken.)
Set color of p
as BLACK and color of gP
as RED.
Color change
Right-Rotate gP
.
Right Rotate
Else, do the following.
If the color of the left child of gP
of z
is RED, set the color of both the children of gP
as BLACK and the color of gP
as RED.
Assign gP
to newNode
.
Else if newNode
is the left child of p
then, assign p
to newNode
and Right-Rotate newNode
.
Set color of p
as BLACK and color of gP
as RED.
Left-Rotate gP
.
(This step is performed after coming out of the while loop.)
Set the root of the tree as BLACK.
Set root’s color black
The final tree look like this:

3. Python, Java and C/C++ Examples
Source code by Python Language:
# Implementing Red-Black Tree in Python import sys # Node creation class Node(): def __init__(self, item): self.item = item self.parent = None self.left = None self.right = None self.color = 1 class RedBlackTree(): def __init__(self): self.TNULL = Node(0) self.TNULL.color = 0 self.TNULL.left = None self.TNULL.right = None self.root = self.TNULL # Preorder def pre_order_helper(self, node): if node != TNULL: sys.stdout.write(node.item + " ") self.pre_order_helper(node.left) self.pre_order_helper(node.right) # Inorder def in_order_helper(self, node): if node != TNULL: self.in_order_helper(node.left) sys.stdout.write(node.item + " ") self.in_order_helper(node.right) # Postorder def post_order_helper(self, node): if node != TNULL: self.post_order_helper(node.left) self.post_order_helper(node.right) sys.stdout.write(node.item + " ") # Search the tree def search_tree_helper(self, node, key): if node == TNULL or key == node.item: return node if key < node.item: return self.search_tree_helper(node.left, key) return self.search_tree_helper(node.right, key) # Balance the tree after insertion def fix_insert(self, k): while k.parent.color == 1: if k.parent == k.parent.parent.right: u = k.parent.parent.left if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.left: k = k.parent self.right_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.left_rotate(k.parent.parent) else: u = k.parent.parent.right if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.right: k = k.parent self.left_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.right_rotate(k.parent.parent) if k == self.root: break self.root.color = 0 # Printing the tree def __print_helper(self, node, indent, last): if node != self.TNULL: sys.stdout.write(indent) if last: sys.stdout.write("R----") indent += " " else: sys.stdout.write("L----") indent += "| " s_color = "RED" if node.color == 1 else "BLACK" print(str(node.item) + "(" + s_color + ")") self.__print_helper(node.left, indent, False) self.__print_helper(node.right, indent, True) def preorder(self): self.pre_order_helper(self.root) def inorder(self): self.in_order_helper(self.root) def postorder(self): self.post_order_helper(self.root) def searchTree(self, k): return self.search_tree_helper(self.root, k) def minimum(self, node): while node.left != self.TNULL: node = node.left return node def maximum(self, node): while node.right != self.TNULL: node = node.right return node def successor(self, x): if x.right != self.TNULL: return self.minimum(x.right) y = x.parent while y != self.TNULL and x == y.right: x = y y = y.parent return y def predecessor(self, x): if (x.left != self.TNULL): return self.maximum(x.left) y = x.parent while y != self.TNULL and x == y.left: x = y y = y.parent return y def left_rotate(self, x): y = x.right x.right = y.left if y.left != self.TNULL: y.left.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.left: x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, x): y = x.left x.left = y.right if y.right != self.TNULL: y.right.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.right: x.parent.right = y else: x.parent.left = y y.right = x x.parent = y def insert(self, key): node = Node(key) node.parent = None node.item = key node.left = self.TNULL node.right = self.TNULL node.color = 1 y = None x = self.root while x != self.TNULL: y = x if node.item < x.item: x = x.left else: x = x.right node.parent = y if y == None: self.root = node elif node.item < y.item: y.left = node else: y.right = node if node.parent == None: node.color = 0 return if node.parent.parent == None: return self.fix_insert(node) def get_root(self): return self.root def print_tree(self): self.__print_helper(self.root, "", True) if __name__ == "__main__": bst = RedBlackTree() bst.insert(55) bst.insert(40) bst.insert(65) bst.insert(60) bst.insert(75) bst.insert(57) bst.print_tree()
Source code by Java Language:
// Implementing Red-Black Tree in Java class Node { int data; Node parent; Node left; Node right; int color; } public class RedBlackTree { private Node root; private Node TNULL; // Preorder private void preOrderHelper(Node node) { if (node != TNULL) { System.out.print(node.data + " "); preOrderHelper(node.left); preOrderHelper(node.right); } } // Inorder private void inOrderHelper(Node node) { if (node != TNULL) { inOrderHelper(node.left); System.out.print(node.data + " "); inOrderHelper(node.right); } } // Post order private void postOrderHelper(Node node) { if (node != TNULL) { postOrderHelper(node.left); postOrderHelper(node.right); System.out.print(node.data + " "); } } // Search the tree private Node searchTreeHelper(Node node, int key) { if (node == TNULL || key == node.data) { return node; } if (key < node.data) { return searchTreeHelper(node.left, key); } return searchTreeHelper(node.right, key); } // Balance the tree after deletion of a node private void fixDelete(Node x) { Node s; while (x != root && x.color == 0) { if (x == x.parent.left) { s = x.parent.right; if (s.color == 1) { s.color = 0; x.parent.color = 1; leftRotate(x.parent); s = x.parent.right; } if (s.left.color == 0 && s.right.color == 0) { s.color = 1; x = x.parent; } else { if (s.right.color == 0) { s.left.color = 0; s.color = 1; rightRotate(s); s = x.parent.right; } s.color = x.parent.color; x.parent.color = 0; s.right.color = 0; leftRotate(x.parent); x = root; } } else { s = x.parent.left; if (s.color == 1) { s.color = 0; x.parent.color = 1; rightRotate(x.parent); s = x.parent.left; } if (s.right.color == 0 && s.right.color == 0) { s.color = 1; x = x.parent; } else { if (s.left.color == 0) { s.right.color = 0; s.color = 1; leftRotate(s); s = x.parent.left; } s.color = x.parent.color; x.parent.color = 0; s.left.color = 0; rightRotate(x.parent); x = root; } } } x.color = 0; } private void rbTransplant(Node u, Node v) { if (u.parent == null) { root = v; } else if (u == u.parent.left) { u.parent.left = v; } else { u.parent.right = v; } v.parent = u.parent; } // Balance the node after insertion private void fixInsert(Node k) { Node u; while (k.parent.color == 1) { if (k.parent == k.parent.parent.right) { u = k.parent.parent.left; if (u.color == 1) { u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; } else { if (k == k.parent.left) { k = k.parent; rightRotate(k); } k.parent.color = 0; k.parent.parent.color = 1; leftRotate(k.parent.parent); } } else { u = k.parent.parent.right; if (u.color == 1) { u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; } else { if (k == k.parent.right) { k = k.parent; leftRotate(k); } k.parent.color = 0; k.parent.parent.color = 1; rightRotate(k.parent.parent); } } if (k == root) { break; } } root.color = 0; } private void printHelper(Node root, String indent, boolean last) { if (root != TNULL) { System.out.print(indent); if (last) { System.out.print("R----"); indent += " "; } else { System.out.print("L----"); indent += "| "; } String sColor = root.color == 1 ? "RED" : "BLACK"; System.out.println(root.data + "(" + sColor + ")"); printHelper(root.left, indent, false); printHelper(root.right, indent, true); } } public RedBlackTree() { TNULL = new Node(); TNULL.color = 0; TNULL.left = null; TNULL.right = null; root = TNULL; } public void preorder() { preOrderHelper(this.root); } public void inorder() { inOrderHelper(this.root); } public void postorder() { postOrderHelper(this.root); } public Node searchTree(int k) { return searchTreeHelper(this.root, k); } public Node minimum(Node node) { while (node.left != TNULL) { node = node.left; } return node; } public Node maximum(Node node) { while (node.right != TNULL) { node = node.right; } return node; } public Node successor(Node x) { if (x.right != TNULL) { return minimum(x.right); } Node y = x.parent; while (y != TNULL && x == y.right) { x = y; y = y.parent; } return y; } public Node predecessor(Node x) { if (x.left != TNULL) { return maximum(x.left); } Node y = x.parent; while (y != TNULL && x == y.left) { x = y; y = y.parent; } return y; } public void leftRotate(Node x) { Node y = x.right; x.right = y.left; if (y.left != TNULL) { y.left.parent = x; } y.parent = x.parent; if (x.parent == null) { this.root = y; } else if (x == x.parent.left) { x.parent.left = y; } else { x.parent.right = y; } y.left = x; x.parent = y; } public void rightRotate(Node x) { Node y = x.left; x.left = y.right; if (y.right != TNULL) { y.right.parent = x; } y.parent = x.parent; if (x.parent == null) { this.root = y; } else if (x == x.parent.right) { x.parent.right = y; } else { x.parent.left = y; } y.right = x; x.parent = y; } public void insert(int key) { Node node = new Node(); node.parent = null; node.data = key; node.left = TNULL; node.right = TNULL; node.color = 1; Node y = null; Node x = this.root; while (x != TNULL) { y = x; if (node.data < x.data) { x = x.left; } else { x = x.right; } } node.parent = y; if (y == null) { root = node; } else if (node.data < y.data) { y.left = node; } else { y.right = node; } if (node.parent == null) { node.color = 0; return; } if (node.parent.parent == null) { return; } fixInsert(node); } public Node getRoot() { return this.root; } public void printTree() { printHelper(this.root, "", true); } public static void main(String[] args) { RedBlackTree bst = new RedBlackTree(); bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); } }
Source code by C Language:
// Implementing Red-Black Tree in C #include <stdio.h> #include <stdlib.h> enum nodeColor { RED, BLACK }; struct rbNode { int data, color; struct rbNode *link[2]; }; struct rbNode *root = NULL; // Create a red-black tree struct rbNode *createNode(int data) { struct rbNode *newnode; newnode = (struct rbNode *)malloc(sizeof(struct rbNode)); newnode->data = data; newnode->color = RED; newnode->link[0] = newnode->link[1] = NULL; return newnode; } // Insert an node void insertion(int data) { struct rbNode *stack[98], *ptr, *newnode, *xPtr, *yPtr; int dir[98], ht = 0, index; ptr = root; if (!root) { root = createNode(data); return; } stack[ht] = root; dir[ht++] = 0; while (ptr != NULL) { if (ptr->data == data) { printf("Duplicates Not Allowed!!\n"); return; } index = (data - ptr->data) > 0 ? 1 : 0; stack[ht] = ptr; ptr = ptr->link[index]; dir[ht++] = index; } stack[ht - 1]->link[index] = newnode = createNode(data); while ((ht >= 3) && (stack[ht - 1]->color == RED)) { if (dir[ht - 2] == 0) { yPtr = stack[ht - 2]->link[1]; if (yPtr != NULL && yPtr->color == RED) { stack[ht - 2]->color = RED; stack[ht - 1]->color = yPtr->color = BLACK; ht = ht - 2; } else { if (dir[ht - 1] == 0) { yPtr = stack[ht - 1]; } else { xPtr = stack[ht - 1]; yPtr = xPtr->link[1]; xPtr->link[1] = yPtr->link[0]; yPtr->link[0] = xPtr; stack[ht - 2]->link[0] = yPtr; } xPtr = stack[ht - 2]; xPtr->color = RED; yPtr->color = BLACK; xPtr->link[0] = yPtr->link[1]; yPtr->link[1] = xPtr; if (xPtr == root) { root = yPtr; } else { stack[ht - 3]->link[dir[ht - 3]] = yPtr; } break; } } else { yPtr = stack[ht - 2]->link[0]; if ((yPtr != NULL) && (yPtr->color == RED)) { stack[ht - 2]->color = RED; stack[ht - 1]->color = yPtr->color = BLACK; ht = ht - 2; } else { if (dir[ht - 1] == 1) { yPtr = stack[ht - 1]; } else { xPtr = stack[ht - 1]; yPtr = xPtr->link[0]; xPtr->link[0] = yPtr->link[1]; yPtr->link[1] = xPtr; stack[ht - 2]->link[1] = yPtr; } xPtr = stack[ht - 2]; yPtr->color = BLACK; xPtr->color = RED; xPtr->link[1] = yPtr->link[0]; yPtr->link[0] = xPtr; if (xPtr == root) { root = yPtr; } else { stack[ht - 3]->link[dir[ht - 3]] = yPtr; } break; } } } root->color = BLACK; } // Delete a node void deletion(int data) { struct rbNode *stack[98], *ptr, *xPtr, *yPtr; struct rbNode *pPtr, *qPtr, *rPtr; int dir[98], ht = 0, diff, i; enum nodeColor color; if (!root) { printf("Tree not available\n"); return; } ptr = root; while (ptr != NULL) { if ((data - ptr->data) == 0) break; diff = (data - ptr->data) > 0 ? 1 : 0; stack[ht] = ptr; dir[ht++] = diff; ptr = ptr->link; } if (ptr->link[1] == NULL) { if ((ptr == root) && (ptr->link[0] == NULL)) { free(ptr); root = NULL; } else if (ptr == root) { root = ptr->link[0]; free(ptr); } else { stack[ht - 1]->link[dir[ht - 1]] = ptr->link[0]; } } else { xPtr = ptr->link[1]; if (xPtr->link[0] == NULL) { xPtr->link[0] = ptr->link[0]; color = xPtr->color; xPtr->color = ptr->color; ptr->color = color; if (ptr == root) { root = xPtr; } else { stack[ht - 1]->link[dir[ht - 1]] = xPtr; } dir[ht] = 1; stack[ht++] = xPtr; } else { i = ht++; while (1) { dir[ht] = 0; stack[ht++] = xPtr; yPtr = xPtr->link[0]; if (!yPtr->link[0]) break; xPtr = yPtr; } dir[i] = 1; stack[i] = yPtr; if (i > 0) stack[i - 1]->link[dir[i - 1]] = yPtr; yPtr->link[0] = ptr->link[0]; xPtr->link[0] = yPtr->link[1]; yPtr->link[1] = ptr->link[1]; if (ptr == root) { root = yPtr; } color = yPtr->color; yPtr->color = ptr->color; ptr->color = color; } } if (ht < 1) return; if (ptr->color == BLACK) { while (1) { pPtr = stack[ht - 1]->link[dir[ht - 1]]; if (pPtr && pPtr->color == RED) { pPtr->color = BLACK; break; } if (ht < 2) break; if (dir[ht - 2] == 0) { rPtr = stack[ht - 1]->link[1]; if (!rPtr) break; if (rPtr->color == RED) { stack[ht - 1]->color = RED; rPtr->color = BLACK; stack[ht - 1]->link[1] = rPtr->link[0]; rPtr->link[0] = stack[ht - 1]; if (stack[ht - 1] == root) { root = rPtr; } else { stack[ht - 2]->link[dir[ht - 2]] = rPtr; } dir[ht] = 0; stack[ht] = stack[ht - 1]; stack[ht - 1] = rPtr; ht++; rPtr = stack[ht - 1]->link[1]; } if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) && (!rPtr->link[1] || rPtr->link[1]->color == BLACK)) { rPtr->color = RED; } else { if (!rPtr->link[1] || rPtr->link[1]->color == BLACK) { qPtr = rPtr->link[0]; rPtr->color = RED; qPtr->color = BLACK; rPtr->link[0] = qPtr->link[1]; qPtr->link[1] = rPtr; rPtr = stack[ht - 1]->link[1] = qPtr; } rPtr->color = stack[ht - 1]->color; stack[ht - 1]->color = BLACK; rPtr->link[1]->color = BLACK; stack[ht - 1]->link[1] = rPtr->link[0]; rPtr->link[0] = stack[ht - 1]; if (stack[ht - 1] == root) { root = rPtr; } else { stack[ht - 2]->link[dir[ht - 2]] = rPtr; } break; } } else { rPtr = stack[ht - 1]->link[0]; if (!rPtr) break; if (rPtr->color == RED) { stack[ht - 1]->color = RED; rPtr->color = BLACK; stack[ht - 1]->link[0] = rPtr->link[1]; rPtr->link[1] = stack[ht - 1]; if (stack[ht - 1] == root) { root = rPtr; } else { stack[ht - 2]->link[dir[ht - 2]] = rPtr; } dir[ht] = 1; stack[ht] = stack[ht - 1]; stack[ht - 1] = rPtr; ht++; rPtr = stack[ht - 1]->link[0]; } if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) && (!rPtr->link[1] || rPtr->link[1]->color == BLACK)) { rPtr->color = RED; } else { if (!rPtr->link[0] || rPtr->link[0]->color == BLACK) { qPtr = rPtr->link[1]; rPtr->color = RED; qPtr->color = BLACK; rPtr->link[1] = qPtr->link[0]; qPtr->link[0] = rPtr; rPtr = stack[ht - 1]->link[0] = qPtr; } rPtr->color = stack[ht - 1]->color; stack[ht - 1]->color = BLACK; rPtr->link[0]->color = BLACK; stack[ht - 1]->link[0] = rPtr->link[1]; rPtr->link[1] = stack[ht - 1]; if (stack[ht - 1] == root) { root = rPtr; } else { stack[ht - 2]->link[dir[ht - 2]] = rPtr; } break; } } ht--; } } } // Print the inorder traversal of the tree void inorderTraversal(struct rbNode *node) { if (node) { inorderTraversal(node->link[0]); printf("%d ", node->data); inorderTraversal(node->link[1]); } return; } // Driver code int main() { int ch, data; while (1) { printf("1. Insertion\t2. Deletion\n"); printf("3. Traverse\t4. Exit"); printf("\nEnter your choice:"); scanf("%d", &ch); switch (ch) { case 1: printf("Enter the element to insert:"); scanf("%d", &data); insertion(data); break; case 2: printf("Enter the element to delete:"); scanf("%d", &data); deletion(data); break; case 3: inorderTraversal(root); printf("\n"); break; case 4: exit(0); default: printf("Not available\n"); break; } printf("\n"); } return 0; }
Source code by C++ Language:
// Implementing Red-Black Tree in C++ #include <iostream> using namespace std; struct Node { int data; Node *parent; Node *left; Node *right; int color; }; typedef Node *NodePtr; class RedBlackTree { private: NodePtr root; NodePtr TNULL; void initializeNULLNode(NodePtr node, NodePtr parent) { node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; } // Preorder void preOrderHelper(NodePtr node) { if (node != TNULL) { cout << node->data << " "; preOrderHelper(node->left); preOrderHelper(node->right); } } // Inorder void inOrderHelper(NodePtr node) { if (node != TNULL) { inOrderHelper(node->left); cout << node->data << " "; inOrderHelper(node->right); } } // Post order void postOrderHelper(NodePtr node) { if (node != TNULL) { postOrderHelper(node->left); postOrderHelper(node->right); cout << node->data << " "; } } NodePtr searchTreeHelper(NodePtr node, int key) { if (node == TNULL || key == node->data) { return node; } if (key < node->data) { return searchTreeHelper(node->left, key); } return searchTreeHelper(node->right, key); } // For balancing the tree after deletion void deleteFix(NodePtr x) { NodePtr s; while (x != root && x->color == 0) { if (x == x->parent->left) { s = x->parent->right; if (s->color == 1) { s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; } if (s->left->color == 0 && s->right->color == 0) { s->color = 1; x = x->parent; } else { if (s->right->color == 0) { s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; } s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; } } else { s = x->parent->left; if (s->color == 1) { s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; } if (s->right->color == 0 && s->right->color == 0) { s->color = 1; x = x->parent; } else { if (s->left->color == 0) { s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; } s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; } } } x->color = 0; } void rbTransplant(NodePtr u, NodePtr v) { if (u->parent == nullptr) { root = v; } else if (u == u->parent->left) { u->parent->left = v; } else { u->parent->right = v; } v->parent = u->parent; } void deleteNodeHelper(NodePtr node, int key) { NodePtr z = TNULL; NodePtr x, y; while (node != TNULL) { if (node->data == key) { z = node; } if (node->data <= key) { node = node->right; } else { node = node->left; } } if (z == TNULL) { cout << "Key not found in the tree" << endl; return; } y = z; int y_original_color = y->color; if (z->left == TNULL) { x = z->right; rbTransplant(z, z->right); } else if (z->right == TNULL) { x = z->left; rbTransplant(z, z->left); } else { y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) { x->parent = y; } else { rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; } rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; } delete z; if (y_original_color == 0) { deleteFix(x); } } // For balancing the tree after insertion void insertFix(NodePtr k) { NodePtr u; while (k->parent->color == 1) { if (k->parent == k->parent->parent->right) { u = k->parent->parent->left; if (u->color == 1) { u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->left) { k = k->parent; rightRotate(k); } k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); } } else { u = k->parent->parent->right; if (u->color == 1) { u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->right) { k = k->parent; leftRotate(k); } k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); } } if (k == root) { break; } } root->color = 0; } void printHelper(NodePtr root, string indent, bool last) { if (root != TNULL) { cout << indent; if (last) { cout << "R----"; indent += " "; } else { cout << "L----"; indent += "| "; } string sColor = root->color ? "RED" : "BLACK"; cout << root->data << "(" << sColor << ")" << endl; printHelper(root->left, indent, false); printHelper(root->right, indent, true); } } public: RedBlackTree() { TNULL = new Node; TNULL->color = 0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; } void preorder() { preOrderHelper(this->root); } void inorder() { inOrderHelper(this->root); } void postorder() { postOrderHelper(this->root); } NodePtr searchTree(int k) { return searchTreeHelper(this->root, k); } NodePtr minimum(NodePtr node) { while (node->left != TNULL) { node = node->left; } return node; } NodePtr maximum(NodePtr node) { while (node->right != TNULL) { node = node->right; } return node; } NodePtr successor(NodePtr x) { if (x->right != TNULL) { return minimum(x->right); } NodePtr y = x->parent; while (y != TNULL && x == y->right) { x = y; y = y->parent; } return y; } NodePtr predecessor(NodePtr x) { if (x->left != TNULL) { return maximum(x->left); } NodePtr y = x->parent; while (y != TNULL && x == y->left) { x = y; y = y->parent; } return y; } void leftRotate(NodePtr x) { NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) { y->left->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; x->parent = y; } void rightRotate(NodePtr x) { NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) { y->right->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->right) { x->parent->right = y; } else { x->parent->left = y; } y->right = x; x->parent = y; } // Inserting a node void insert(int key) { NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) { y = x; if (node->data < x->data) { x = x->left; } else { x = x->right; } } node->parent = y; if (y == nullptr) { root = node; } else if (node->data < y->data) { y->left = node; } else { y->right = node; } if (node->parent == nullptr) { node->color = 0; return; } if (node->parent->parent == nullptr) { return; } insertFix(node); } NodePtr getRoot() { return this->root; } void deleteNode(int data) { deleteNodeHelper(this->root, data); } void printTree() { if (root) { printHelper(this->root, "", true); } } }; int main() { RedBlackTree bst; bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); cout << endl << "After deleting" << endl; bst.deleteNode(40); bst.printTree(); }