Medical Image Segmentation Using Artificial Neural Networks

Segmentation of tissues and structures from medical images is the first step in many image analysis applications developed for medical diagnosis. Development of treatment plans and evaluation of disease progression are other applications. These applications stem from the fact that diseases affect specific tissues or structures, lead to loss, atrophy (volume loss), and abnormalities. Consequently, an accurate, reliable, and automatic segmentation of these tissues and structures can improve diagnosis and treatment of diseases. Manual segmentation, although prone to rater drift and bias, is usually accurate but is impractical for large datasets because it is tedious and time consuming. Automatic segmentation methods can be useful for clinical applications if they have: 1) ability to segment like an expert; 2) excellent performance for diverse datasets; and 3) reasonable processing speed.

Artificial Neural Networks (ANNs) have been developed for a wide range of applications such as function approximation, feature extraction, optimization, and classification. In particular, they have been developed for image enhancement, segmentation, registration, feature extraction, and object recognition. Among these, image segmentation is more important as it is a critical step for high-level processing such as object recognition. Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Hopfield, Cellular, and Pulse-Coupled neural networks have been used for image segmentation. These networks can be categorized into feed-forward (associative) and feedback (auto-associative) networks. MLP, Self-Organized Map (SOM), and RBF neural networks belong to the feed-forward networks while Hopfield, Cellular, and Pulse-Coupled neural networks belong to the feedback networks.

This chapter is organized as follows. Section 2 explains methods that benefit from feedback networks such as Hopfield, Cellular, and Pulse-Coupled neural networks for image segmentation. In Section 3, we review the methods that use feedforward networks such as MLP and RBF neural networks. Then, we present our recent method. In this method, deep brain structures are segmented using Geometric Moment Invariants (GMIs) and MLP neural networks.

Related posts:

Machine Learning with spark and python - Michael Bowles
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Java Deep Learning Essentials - Yusuke Sugomori
Deep Learning for Natural Language Processing - Jason Brownlee
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Data Science and Big Data Analytics - EMC Education Services
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Deep Learning and Neural Networks - Jeff Heaton
Deep Learning with PyTorch - Vishnu Subramanian
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Python Deep Learning Cookbook - Indra den Bakker
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Deep Learning with Python - Francois Chollet
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Python Machine Learning Eqution Reference - Sebastian Raschka
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
The hundred-page Machine Learning Book - Andriy Burkov
Introduction to Deep Learning - Eugene Charniak
Deep Learning with Python - Francois Cholletf
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Amazon Machine Learning Developer Guild Version Latest
Python Machine Learning - Sebastian Raschka