Introduction to the Math of Neural Networks – Jeff Heaton

If you have read other books I have written, you will know that I try to shield the reader from the mathematics behind Al. Often, you do not need to know the exact math that is used to train a neural network or perform a cluster operation. You simply want the result. This results-based approach is very much the focus of the Encog project. Encog is an advanced machine learning framework that allows you to perform many advanced operations, such as neural networks, genetic algorithm, support vector machines, simulated annealing and other machine learning methods. Encog allows you to use these advanced techniques without needing to know what is happening behind the scenes.

However, sometimes you really do want to know what is going on behind the scenes. You do want to know the math that is involved. In this book, you will learn what happens, behind the scenes, with a neural network. You will also be exposed to the math. There are already many neural network hooks that at first glance appear as a math text. This is not what I seek to produce here. There are already several very good books that achieve a pure mathematical introduction to neural networks. My goal is to produce a mathematically-based neural network book that targets someone who has perhaps only college-level algebra and computer programing background. These are the only two prerequisites for understanding this book, aside from one more that I will mention later in this introduction. Neural networks overlap several bodies of mathematics.

Neural network goals, such as classification, regression and clustering, come from statistics. The gradient descent that goes into bacicpropagation, along with other training methods, requires knowledge of Calculus. Advanced training, such as Levenberg Marquardt, require both Calculus and Matrix Mathematics. To read nearly any academic-level neural network or machine learning targeted book, you will need some knowledge of Algebra, Calculus, Statistics and Matrix Mathematics. However, the reality is that you need only a relatively small amount of knowledge from each of these areas. The goal of this book is to teach you enough math to understand neural networks and their training.

Related posts:

Learn Keras for Deep Neural Networks - Jojo Moolayil
Medical Image Segmentation Using Artificial Neural Networks
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Python Machine Learning Eqution Reference - Sebastian Raschka
Python Machine Learning - Sebastian Raschka
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Machine Learning with spark and python - Michael Bowles
Deep Learning in Python - LazyProgrammer
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Deep Learning for Natural Language Processing - Jason Brownlee
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Deep Learning with Python - Francois Chollet
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Introduction to Deep Learning - Eugene Charniak
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Java Deep Learning Essentials - Yusuke Sugomori
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Python Data Structures and Algorithms - Benjamin Baka
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
The hundred-page Machine Learning Book - Andriy Burkov
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Pattern recognition and machine learning - Christopher M.Bishop
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Artificial Intelligence by example - Denis Rothman