Machine Learning with spark and python – Michael Bowles

Extracting actionable information from data is changing the fabric of modern business in ways that directly affect programmers. One way is the demand for new programming skills. Market analysts predict demand for people with advanced statistics and machine learning skills will exceed supply by 140,000 to 190,000 by 2018. That means good salaries and a wide choice of interesting projects for those who have the requisite skills. Another development that affects programmers is progress in developing core tools for statistics and machine learning. This relieves programmers of the need to program intricate algorithms for themselves each time they want to try a new one. Among general-purpose programming languages, Python developers have been in the forefront, building state-of-the-art machine learning tools, but there is a gap between having the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a number of ways: online courses, a number of well-written books, and so on. Many of these give excellent surveys of machine learning algorithms and examples of their use, but because of the availability of so many different algorithms, it’s difficult to cover the details of their usage in a survey. This leaves a gap for the practitioner. The number of algorithms available requires making choices that a programmer new to machine learning might not be equipped to make until trying several, and it leaves the programmer to fill in the details of the usage of these algorithms in the context of overall problem formulation and solution.

Related posts:

Pattern recognition and machine learning - Christopher M.Bishop
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
The hundred-page Machine Learning Book - Andriy Burkov
Fundamentals of Deep Learning - Nikhil Bubuma
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Neural Networks - A visual introduction for beginners - Michael Taylor
R Deep Learning Essentials - Dr. Joshua F.Wiley
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Introduction to the Math of Neural Networks - Jeff Heaton
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Deep Learning and Neural Networks - Jeff Heaton
Python Data Structures and Algorithms - Benjamin Baka
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Deep Learning with Python - Francois Cholletf
An introduction to neural networks - Kevin Gurney & University of Sheffield
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Medical Image Segmentation Using Artificial Neural Networks
Deep Learning with PyTorch - Vishnu Subramanian
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Amazon Machine Learning Developer Guild Version Latest
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Python Deep Learning Cookbook - Indra den Bakker
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf