Machine Learning with spark and python – Michael Bowles

Extracting actionable information from data is changing the fabric of modern business in ways that directly affect programmers. One way is the demand for new programming skills. Market analysts predict demand for people with advanced statistics and machine learning skills will exceed supply by 140,000 to 190,000 by 2018. That means good salaries and a wide choice of interesting projects for those who have the requisite skills. Another development that affects programmers is progress in developing core tools for statistics and machine learning. This relieves programmers of the need to program intricate algorithms for themselves each time they want to try a new one. Among general-purpose programming languages, Python developers have been in the forefront, building state-of-the-art machine learning tools, but there is a gap between having the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a number of ways: online courses, a number of well-written books, and so on. Many of these give excellent surveys of machine learning algorithms and examples of their use, but because of the availability of so many different algorithms, it’s difficult to cover the details of their usage in a survey. This leaves a gap for the practitioner. The number of algorithms available requires making choices that a programmer new to machine learning might not be equipped to make until trying several, and it leaves the programmer to fill in the details of the usage of these algorithms in the context of overall problem formulation and solution.

Related posts:

Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Deep Learning with Python - Francois Cholletf
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
An introduction to neural networks - Kevin Gurney & University of Sheffield
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning with Hadoop - Dipayan Dev
Coding Theory - Algorithms, Architectures and Application
Deep Learning with Python - Francois Chollet
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Deep Learning in Python - LazyProgrammer
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Machine Learning with Python for everyone - Mark E.Fenner
Java Deep Learning Essentials - Yusuke Sugomori
Deep Learning with Theano - Christopher Bourez
Artificial Intelligence by example - Denis Rothman
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Amazon Machine Learning Developer Guild Version Latest
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Neural Networks - A visual introduction for beginners - Michael Taylor
Python Data Structures and Algorithms - Benjamin Baka
Introduction to Deep Learning - Eugene Charniak
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Python Deep Learning Cookbook - Indra den Bakker
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...