Machine Learning with spark and python – Michael Bowles

Extracting actionable information from data is changing the fabric of modern business in ways that directly affect programmers. One way is the demand for new programming skills. Market analysts predict demand for people with advanced statistics and machine learning skills will exceed supply by 140,000 to 190,000 by 2018. That means good salaries and a wide choice of interesting projects for those who have the requisite skills. Another development that affects programmers is progress in developing core tools for statistics and machine learning. This relieves programmers of the need to program intricate algorithms for themselves each time they want to try a new one. Among general-purpose programming languages, Python developers have been in the forefront, building state-of-the-art machine learning tools, but there is a gap between having the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a number of ways: online courses, a number of well-written books, and so on. Many of these give excellent surveys of machine learning algorithms and examples of their use, but because of the availability of so many different algorithms, it’s difficult to cover the details of their usage in a survey. This leaves a gap for the practitioner. The number of algorithms available requires making choices that a programmer new to machine learning might not be equipped to make until trying several, and it leaves the programmer to fill in the details of the usage of these algorithms in the context of overall problem formulation and solution.

Related posts:

Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Python Deep Learning Cookbook - Indra den Bakker
Coding Theory - Algorithms, Architectures and Application
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Deep Learning with Python - Francois Chollet
Intelligent Projects Using Python - Santanu Pattanayak
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Amazon Machine Learning Developer Guild Version Latest
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Introduction to the Math of Neural Networks - Jeff Heaton
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Data Science and Big Data Analytics - EMC Education Services
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Learn Keras for Deep Neural Networks - Jojo Moolayil
Java Deep Learning Essentials - Yusuke Sugomori
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Deep Learning with Python - Francois Cholletf
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Fundamentals of Deep Learning - Nikhil Bubuma
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Deep Learning with PyTorch - Vishnu Subramanian
Introduction to Scientific Programming with Python - Joakim Sundnes
The hundred-page Machine Learning Book - Andriy Burkov