Machine Learning with spark and python – Michael Bowles

Extracting actionable information from data is changing the fabric of modern business in ways that directly affect programmers. One way is the demand for new programming skills. Market analysts predict demand for people with advanced statistics and machine learning skills will exceed supply by 140,000 to 190,000 by 2018. That means good salaries and a wide choice of interesting projects for those who have the requisite skills. Another development that affects programmers is progress in developing core tools for statistics and machine learning. This relieves programmers of the need to program intricate algorithms for themselves each time they want to try a new one. Among general-purpose programming languages, Python developers have been in the forefront, building state-of-the-art machine learning tools, but there is a gap between having the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a number of ways: online courses, a number of well-written books, and so on. Many of these give excellent surveys of machine learning algorithms and examples of their use, but because of the availability of so many different algorithms, it’s difficult to cover the details of their usage in a survey. This leaves a gap for the practitioner. The number of algorithms available requires making choices that a programmer new to machine learning might not be equipped to make until trying several, and it leaves the programmer to fill in the details of the usage of these algorithms in the context of overall problem formulation and solution.

Related posts:

Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Pattern recognition and machine learning - Christopher M.Bishop
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Learn Keras for Deep Neural Networks - Jojo Moolayil
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Fundamentals of Deep Learning - Nikhil Bubuma
Neural Networks and Deep Learning - Charu C.Aggarwal
Introduction to Scientific Programming with Python - Joakim Sundnes
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Deep Learning with Python - Francois Cholletf
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
The hundred-page Machine Learning Book - Andriy Burkov
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Deep Learning with Keras - Antonio Gulli & Sujit Pal
An introduction to neural networks - Kevin Gurney & University of Sheffield
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Deep Learning with PyTorch - Vishnu Subramanian
Deep Learning with Hadoop - Dipayan Dev
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster