Machine Learning with spark and python – Michael Bowles

Extracting actionable information from data is changing the fabric of modern business in ways that directly affect programmers. One way is the demand for new programming skills. Market analysts predict demand for people with advanced statistics and machine learning skills will exceed supply by 140,000 to 190,000 by 2018. That means good salaries and a wide choice of interesting projects for those who have the requisite skills. Another development that affects programmers is progress in developing core tools for statistics and machine learning. This relieves programmers of the need to program intricate algorithms for themselves each time they want to try a new one. Among general-purpose programming languages, Python developers have been in the forefront, building state-of-the-art machine learning tools, but there is a gap between having the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a number of ways: online courses, a number of well-written books, and so on. Many of these give excellent surveys of machine learning algorithms and examples of their use, but because of the availability of so many different algorithms, it’s difficult to cover the details of their usage in a survey. This leaves a gap for the practitioner. The number of algorithms available requires making choices that a programmer new to machine learning might not be equipped to make until trying several, and it leaves the programmer to fill in the details of the usage of these algorithms in the context of overall problem formulation and solution.

Related posts:

Introduction to the Math of Neural Networks - Jeff Heaton
Python Machine Learning Eqution Reference - Sebastian Raschka
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Deep Learning with Hadoop - Dipayan Dev
An introduction to neural networks - Kevin Gurney & University of Sheffield
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Amazon Machine Learning Developer Guild Version Latest
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with PyTorch - Vishnu Subramanian
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Deep Learning in Python - LazyProgrammer
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Introduction to Scientific Programming with Python - Joakim Sundnes
Neural Networks - A visual introduction for beginners - Michael Taylor
Artificial Intelligence by example - Denis Rothman
The hundred-page Machine Learning Book - Andriy Burkov