Pattern recognition and machine learning – Christopher M.Bishop

Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propa- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications.

This new textbook reflects these recent developments while providing a compre- hensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or ma- chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not es- sential as the book includes a self-contained introduction to basic probability theory. Because this book has broad scope, it is impossible to provide a complete list of references, and in particular no attempt has been made to provide accurate historical attribution of ideas. Instead, the aim has been to give references that offer greater detail than is possible here and that hopefully provide entry points into what, in some cases, is a very extensive literature. For this reason, the references are often to more recent textbooks and review articles rather than to original sources.

Related posts:

Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Introduction to Deep Learning - Eugene Charniak
Deep Learning with Python - Francois Chollet
Deep Learning with Python - Francois Cholletf
An introduction to neural networks - Kevin Gurney & University of Sheffield
Neural Networks - A visual introduction for beginners - Michael Taylor
Neural Networks and Deep Learning - Charu C.Aggarwal
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Intelligent Projects Using Python - Santanu Pattanayak
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Introduction to the Math of Neural Networks - Jeff Heaton
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Deep Learning with Theano - Christopher Bourez
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Machine Learning with Python for everyone - Mark E.Fenner
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar