Pattern recognition and machine learning – Christopher M.Bishop

Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propa- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications.

This new textbook reflects these recent developments while providing a compre- hensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or ma- chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not es- sential as the book includes a self-contained introduction to basic probability theory. Because this book has broad scope, it is impossible to provide a complete list of references, and in particular no attempt has been made to provide accurate historical attribution of ideas. Instead, the aim has been to give references that offer greater detail than is possible here and that hopefully provide entry points into what, in some cases, is a very extensive literature. For this reason, the references are often to more recent textbooks and review articles rather than to original sources.

Related posts:

Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Coding Theory - Algorithms, Architectures and Application
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Deep Learning with PyTorch - Vishnu Subramanian
The hundred-page Machine Learning Book - Andriy Burkov
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Intelligent Projects Using Python - Santanu Pattanayak
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Deep Learning with Hadoop - Dipayan Dev
Deep Learning with Python - Francois Cholletf
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Introduction to Scientific Programming with Python - Joakim Sundnes
R Deep Learning Essentials - Dr. Joshua F.Wiley
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Deep Learning in Python - LazyProgrammer
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Neural Networks - A visual introduction for beginners - Michael Taylor
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Introduction to the Math of Neural Networks - Jeff Heaton
Superintelligence - Paths, Danges, Strategies - Nick Bostrom