Generative Deep Learning – Teaching Machines to Paint, Write, Compose and Play – David Foster

An undeniable part of the human condition is our ability to create. Since our earliest days as cave people, we have sought opportunities to generate original and beautiful creations. For early man, this took the form of cave paintings depicting wild animals and abstract patterns, created with pigments placed carefully and methodically onto rock. The Romantic Era gave us the mastery of Tchaikovsky symphonies, with their ability to inspire feelings of triumph and tragedy through sound waves, woven together to form beautiful melodies and harmonies. And in recent times, we have
found ourselves rushing to bookshops at midnight to buy stories about a fictional wizard, because the combination of letters creates a narrative that wills us to turn the page and find out what happens to our hero.

It is therefore not surprising that humanity has started to ask the ultimate question of creativity: can we create something that is in itself creative?
This is the question that generative modeling aims to answer. With recent advances in methodology and technology, we are now able to build machines that can paint origi‐nal artwork in a given style, write coherent paragraphs with long-term structure, compose music that is pleasant to listen to, and develop winning strategies for com‐plex games by generating imaginary future scenarios. This is just the start of a gener‐ative revolution that will leave us with no choice but to find answers to some of the biggest questions about the mechanics of creativity, and ultimately, what it means to be human. In short, there has never been a better time to learn about generative modeling—so let’s get started!

Related posts:

Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Introduction to Deep Learning - Eugene Charniak
Deep Learning with PyTorch - Vishnu Subramanian
R Deep Learning Essentials - Dr. Joshua F.Wiley
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Deep Learning with Theano - Christopher Bourez
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Deep Learning with Python - Francois Cholletf
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Python Machine Learning Eqution Reference - Sebastian Raschka
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Introduction to the Math of Neural Networks - Jeff Heaton
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Machine Learning with spark and python - Michael Bowles
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Intelligent Projects Using Python - Santanu Pattanayak
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Learn Keras for Deep Neural Networks - Jojo Moolayil
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda