Generative Deep Learning – Teaching Machines to Paint, Write, Compose and Play – David Foster

An undeniable part of the human condition is our ability to create. Since our earliest days as cave people, we have sought opportunities to generate original and beautiful creations. For early man, this took the form of cave paintings depicting wild animals and abstract patterns, created with pigments placed carefully and methodically onto rock. The Romantic Era gave us the mastery of Tchaikovsky symphonies, with their ability to inspire feelings of triumph and tragedy through sound waves, woven together to form beautiful melodies and harmonies. And in recent times, we have
found ourselves rushing to bookshops at midnight to buy stories about a fictional wizard, because the combination of letters creates a narrative that wills us to turn the page and find out what happens to our hero.

It is therefore not surprising that humanity has started to ask the ultimate question of creativity: can we create something that is in itself creative?
This is the question that generative modeling aims to answer. With recent advances in methodology and technology, we are now able to build machines that can paint origi‐nal artwork in a given style, write coherent paragraphs with long-term structure, compose music that is pleasant to listen to, and develop winning strategies for com‐plex games by generating imaginary future scenarios. This is just the start of a gener‐ative revolution that will leave us with no choice but to find answers to some of the biggest questions about the mechanics of creativity, and ultimately, what it means to be human. In short, there has never been a better time to learn about generative modeling—so let’s get started!

Related posts:

Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Data Science and Big Data Analytics - EMC Education Services
Medical Image Segmentation Using Artificial Neural Networks
Intelligent Projects Using Python - Santanu Pattanayak
Deep Learning and Neural Networks - Jeff Heaton
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Deep Learning with Keras - Antonio Gulli & Sujit Pal
An introduction to neural networks - Kevin Gurney & University of Sheffield
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Python Machine Learning - Sebastian Raschka
Learn Keras for Deep Neural Networks - Jojo Moolayil
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Python Machine Learning Eqution Reference - Sebastian Raschka
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Python Deep Learning Cookbook - Indra den Bakker
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Coding Theory - Algorithms, Architectures and Application
R Deep Learning Essentials - Dr. Joshua F.Wiley
Machine Learning with Python for everyone - Mark E.Fenner
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python Data Structures and Algorithms - Benjamin Baka
Fundamentals of Deep Learning - Nikhil Bubuma
Deep Learning with Python - Francois Cholletf
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Artificial Intelligence by example - Denis Rothman