Generative Deep Learning – Teaching Machines to Paint, Write, Compose and Play – David Foster

An undeniable part of the human condition is our ability to create. Since our earliest days as cave people, we have sought opportunities to generate original and beautiful creations. For early man, this took the form of cave paintings depicting wild animals and abstract patterns, created with pigments placed carefully and methodically onto rock. The Romantic Era gave us the mastery of Tchaikovsky symphonies, with their ability to inspire feelings of triumph and tragedy through sound waves, woven together to form beautiful melodies and harmonies. And in recent times, we have
found ourselves rushing to bookshops at midnight to buy stories about a fictional wizard, because the combination of letters creates a narrative that wills us to turn the page and find out what happens to our hero.

It is therefore not surprising that humanity has started to ask the ultimate question of creativity: can we create something that is in itself creative?
This is the question that generative modeling aims to answer. With recent advances in methodology and technology, we are now able to build machines that can paint origi‐nal artwork in a given style, write coherent paragraphs with long-term structure, compose music that is pleasant to listen to, and develop winning strategies for com‐plex games by generating imaginary future scenarios. This is just the start of a gener‐ative revolution that will leave us with no choice but to find answers to some of the biggest questions about the mechanics of creativity, and ultimately, what it means to be human. In short, there has never been a better time to learn about generative modeling—so let’s get started!

Related posts:

Deep Learning with Python - Francois Cholletf
Introduction to the Math of Neural Networks - Jeff Heaton
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Deep Learning with Theano - Christopher Bourez
Introduction to Deep Learning - Eugene Charniak
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Intelligent Projects Using Python - Santanu Pattanayak
R Deep Learning Essentials - Dr. Joshua F.Wiley
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Deep Learning with PyTorch - Vishnu Subramanian
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Fundamentals of Deep Learning - Nikhil Bubuma
Neural Networks and Deep Learning - Charu C.Aggarwal
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning with Hadoop - Dipayan Dev
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Deep Learning with Keras - Antonio Gulli & Sujit Pal
The hundred-page Machine Learning Book - Andriy Burkov
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Deep Learning in Python - LazyProgrammer
Deep Learning - Ian Goodfellow & Yoshua Bengio & Aaron Courville
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...