Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Coding Theory - Algorithms, Architectures and Application
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Introduction to the Math of Neural Networks - Jeff Heaton
Data Science and Big Data Analytics - EMC Education Services
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Artificial Intelligence by example - Denis Rothman
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Deep Learning with Theano - Christopher Bourez
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Neural Networks - A visual introduction for beginners - Michael Taylor
Python Machine Learning - Sebastian Raschka
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Medical Image Segmentation Using Artificial Neural Networks
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Python Data Structures and Algorithms - Benjamin Baka
Amazon Machine Learning Developer Guild Version Latest
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Neural Networks and Deep Learning - Charu C.Aggarwal
The hundred-page Machine Learning Book - Andriy Burkov
Pro Deep Learning with TensorFlow - Santunu Pattanayak