Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Java Deep Learning Essentials - Yusuke Sugomori
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Introduction to Deep Learning - Eugene Charniak
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
An introduction to neural networks - Kevin Gurney & University of Sheffield
The hundred-page Machine Learning Book - Andriy Burkov
Amazon Machine Learning Developer Guild Version Latest
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Learn Keras for Deep Neural Networks - Jojo Moolayil
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Medical Image Segmentation Using Artificial Neural Networks
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Pattern recognition and machine learning - Christopher M.Bishop
Python Machine Learning - Sebastian Raschka
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Neural Networks - A visual introduction for beginners - Michael Taylor
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Data Science and Big Data Analytics - EMC Education Services
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Neural Networks and Deep Learning - Charu C.Aggarwal
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Python Deep Learning Cookbook - Indra den Bakker
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...