Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Python Data Structures and Algorithms - Benjamin Baka
Neural Networks - A visual introduction for beginners - Michael Taylor
Deep Learning with Python - Francois Chollet
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Pattern recognition and machine learning - Christopher M.Bishop
Data Science and Big Data Analytics - EMC Education Services
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Learn Keras for Deep Neural Networks - Jojo Moolayil
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Introduction to the Math of Neural Networks - Jeff Heaton
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Artificial Intelligence by example - Denis Rothman
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Medical Image Segmentation Using Artificial Neural Networks
Machine Learning with spark and python - Michael Bowles
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Intelligent Projects Using Python - Santanu Pattanayak
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Deep Learning with PyTorch - Vishnu Subramanian
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman