Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Python Deep Learning Cookbook - Indra den Bakker
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with PyTorch - Vishnu Subramanian
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Introduction to the Math of Neural Networks - Jeff Heaton
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Medical Image Segmentation Using Artificial Neural Networks
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Deep Learning and Neural Networks - Jeff Heaton
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Pattern recognition and machine learning - Christopher M.Bishop
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Learn Keras for Deep Neural Networks - Jojo Moolayil
Java Deep Learning Essentials - Yusuke Sugomori
Introduction to Deep Learning - Eugene Charniak
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Coding Theory - Algorithms, Architectures and Application
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Deep Learning with Python - Francois Chollet
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Data Science and Big Data Analytics - EMC Education Services
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Deep Learning with Python - Francois Cholletf
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty