Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Python Data Structures and Algorithms - Benjamin Baka
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Amazon Machine Learning Developer Guild Version Latest
Artificial Intelligence by example - Denis Rothman
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Deep Learning with Python - Francois Chollet
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Coding Theory - Algorithms, Architectures and Application
Medical Image Segmentation Using Artificial Neural Networks
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Machine Learning with Python for everyone - Mark E.Fenner
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Java Deep Learning Essentials - Yusuke Sugomori
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Learn Keras for Deep Neural Networks - Jojo Moolayil
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning with Python - Francois Cholletf
Neural Networks and Deep Learning - Charu C.Aggarwal