Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Machine Learning with spark and python - Michael Bowles
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Python Machine Learning - Sebastian Raschka
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Deep Learning with PyTorch - Vishnu Subramanian
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Deep Learning in Python - LazyProgrammer
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Pattern recognition and machine learning - Christopher M.Bishop
An introduction to neural networks - Kevin Gurney & University of Sheffield
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Deep Learning for Natural Language Processing - Jason Brownlee
Neural Networks - A visual introduction for beginners - Michael Taylor
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Deep Learning with Python - Francois Cholletf
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Learn Keras for Deep Neural Networks - Jojo Moolayil
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Java Deep Learning Essentials - Yusuke Sugomori
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Coding Theory - Algorithms, Architectures and Application
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
The hundred-page Machine Learning Book - Andriy Burkov