Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Python Machine Learning Eqution Reference - Sebastian Raschka
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Deep Learning with Python - Francois Chollet
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
R Deep Learning Essentials - Dr. Joshua F.Wiley
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Introduction to Scientific Programming with Python - Joakim Sundnes
Coding Theory - Algorithms, Architectures and Application
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Intelligent Projects Using Python - Santanu Pattanayak
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning with Hadoop - Dipayan Dev
Deep Learning with PyTorch - Vishnu Subramanian
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Python Data Structures and Algorithms - Benjamin Baka
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Deep Learning in Python - LazyProgrammer
Deep Learning for Natural Language Processing - Jason Brownlee
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Introduction to the Math of Neural Networks - Jeff Heaton
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Artificial Intelligence by example - Denis Rothman
Python Deep Learning Cookbook - Indra den Bakker
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David