Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Pro Deep Learning with TensorFlow - Santunu Pattanayak
Data Science and Big Data Analytics - EMC Education Services
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Coding Theory - Algorithms, Architectures and Application
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Python Machine Learning Eqution Reference - Sebastian Raschka
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Pattern recognition and machine learning - Christopher M.Bishop
Python Machine Learning - Sebastian Raschka
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Deep Learning with PyTorch - Vishnu Subramanian
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Artificial Intelligence by example - Denis Rothman
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Deep Learning and Neural Networks - Jeff Heaton
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey