Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Python Deep Learning Cookbook - Indra den Bakker
Deep Learning in Python - LazyProgrammer
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Artificial Intelligence by example - Denis Rothman
Amazon Machine Learning Developer Guild Version Latest
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Java Deep Learning Essentials - Yusuke Sugomori
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Python Machine Learning - Sebastian Raschka
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Python Machine Learning Eqution Reference - Sebastian Raschka
Neural Networks and Deep Learning - Charu C.Aggarwal
R Deep Learning Essentials - Dr. Joshua F.Wiley
Deep Learning with Python - Francois Cholletf
Introduction to Scientific Programming with Python - Joakim Sundnes
Pattern recognition and machine learning - Christopher M.Bishop
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Intelligent Projects Using Python - Santanu Pattanayak
Data Science and Big Data Analytics - EMC Education Services
Coding Theory - Algorithms, Architectures and Application
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Machine Learning with spark and python - Michael Bowles
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Deep Learning with Theano - Christopher Bourez
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...