Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Deep Learning for Natural Language Processing - Jason Brownlee
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Machine Learning with spark and python - Michael Bowles
Introduction to the Math of Neural Networks - Jeff Heaton
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Deep Learning with PyTorch - Vishnu Subramanian
Python Machine Learning - Sebastian Raschka
Learn Keras for Deep Neural Networks - Jojo Moolayil
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Pro Deep Learning with TensorFlow - Santunu Pattanayak
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Fundamentals of Deep Learning - Nikhil Bubuma
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Intelligent Projects Using Python - Santanu Pattanayak
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Introduction to Scientific Programming with Python - Joakim Sundnes
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Data Science and Big Data Analytics - EMC Education Services
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...