Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Neural Networks - A visual introduction for beginners - Michael Taylor
Data Science and Big Data Analytics - EMC Education Services
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Learn Keras for Deep Neural Networks - Jojo Moolayil
Introduction to Deep Learning - Eugene Charniak
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Machine Learning with Python for everyone - Mark E.Fenner
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Deep Learning in Python - LazyProgrammer
Medical Image Segmentation Using Artificial Neural Networks
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Coding Theory - Algorithms, Architectures and Application
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Fundamentals of Deep Learning - Nikhil Bubuma
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Machine Learning with spark and python - Michael Bowles
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Pattern recognition and machine learning - Christopher M.Bishop
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy