Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Coding Theory - Algorithms, Architectures and Application
An introduction to neural networks - Kevin Gurney & University of Sheffield
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Java Deep Learning Essentials - Yusuke Sugomori
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Neural Networks - A visual introduction for beginners - Michael Taylor
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Pattern recognition and machine learning - Christopher M.Bishop
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Python Data Structures and Algorithms - Benjamin Baka
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Artificial Intelligence by example - Denis Rothman
Neural Networks and Deep Learning - Charu C.Aggarwal
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Deep Learning with Applications Using Python - Navin Kumar Manaswi
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Learn Keras for Deep Neural Networks - Jojo Moolayil
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Deep Learning with Hadoop - Dipayan Dev
Deep Learning and Neural Networks - Jeff Heaton