Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Intelligent Projects Using Python - Santanu Pattanayak
Machine Learning - The art and science of alhorithms that make sense of data - Peter Flach
Deep Learning with Python - Francois Cholletf
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Python Machine Learning - Sebastian Raschka
Medical Image Segmentation Using Artificial Neural Networks
Amazon Machine Learning Developer Guild Version Latest
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Java Deep Learning Essentials - Yusuke Sugomori
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Deep Learning in Python - LazyProgrammer
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Artificial Intelligence by example - Denis Rothman
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
Introduction to the Math of Neural Networks - Jeff Heaton
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Introduction to Scientific Programming with Python - Joakim Sundnes
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Pattern recognition and machine learning - Christopher M.Bishop
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Deep Learning with Keras - Antonio Gulli & Sujit Pal
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke