Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Artificial Intelligence by example - Denis Rothman
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Amazon Machine Learning Developer Guild Version Latest
Python Machine Learning Second Edition - Sebastian Raschka & Vahid Mirjalili
Learn Keras for Deep Neural Networks - Jojo Moolayil
The hundred-page Machine Learning Book - Andriy Burkov
Deep Learning with Hadoop - Dipayan Dev
Building Machine Learning Systems with Python - Willi Richert & Luis Pedro Coelho
Coding Theory - Algorithms, Architectures and Application
Machine Learning - An Algorithmic Perspective second edition - Stephen Marsland
An introduction to neural networks - Kevin Gurney & University of Sheffield
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Introduction to Deep Learning Business Application for Developers - Armando Vieira & Bernardete Ribe...
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Artificial Intelligence with an introduction to Machine Learning second edition - Richar E. Neapolit...
Neural Networks - A visual introduction for beginners - Michael Taylor
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Deep Learning with Theano - Christopher Bourez
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Python Deeper Insights into Machine Learning - Sebastian Raschka & David Julian & John Hearty
Deep Learning for Natural Language Processing - Jason Brownlee
Deep Learning and Neural Networks - Jeff Heaton
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Introduction to Scientific Programming with Python - Joakim Sundnes
Python Artificial Intelligence Project for Beginners - Joshua Eckroth
Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Machine Learning with Python for everyone - Mark E.Fenner