Deep Learning – Ian Goodfellow & Yoshua Bengio & Aaron Courville

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan.

Related posts:

Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Python Machine Learning Eqution Reference - Sebastian Raschka
Deep Learning for Natural Language Processing - Palash Goyal & Sumit Pandey & Karan Jain
Learn Keras for Deep Neural Networks - Jojo Moolayil
Java Deep Learning Essentials - Yusuke Sugomori
Introduction to Deep Learning - Eugene Charniak
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Python Data Structures and Algorithms - Benjamin Baka
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Deep Learning and Neural Networks - Jeff Heaton
Machine Learning with spark and python - Michael Bowles
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Artificial Intelligence - 101 things you must know today about our future - Lasse Rouhiainen
The hundred-page Machine Learning Book - Andriy Burkov
Practical computer vision applications using Deep Learning with CNNs - Ahmed Fawzy Gad
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Python Deep Learning Cookbook - Indra den Bakker
Applied Text Analysis with Python - Benjamin Benfort & Rebecca Bibro & Tony Ojeda
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning with Theano - Christopher Bourez
Deep Learning with Python - Francois Cholletf
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Deep Learning with Python - Francois Chollet
Deep Learning - A Practitioner's Approach - Josh Patterson & Adam Gibson
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster