Machine Learning – The art and science of alhorithms that make sense of data – Peter Flach

This book started life in the Summer of 2008, when my employer, the University of Bristol, awarded me a one-year research fellowship. I decided to embark on writing a general introduction to machine learning, for two reasons. One was that there was scope for such a book, to complement the many more specialist texts that are available; the other was that through writing I would learn new things – after all, the best way to
learn is to teach.

The challenge facing anyone attempting to write an introductory machine learning text is to do justice to the incredible richness of the machine learning field without losing sight of its unifying principles. Put too much emphasis on the diversity of the discipline and you risk ending up with a ‘cookbook’ without much coherence; stress your favourite paradigm too much and you may leave out too much of the other interesting stuff. Partly through a process of trial and error, I arrived at the approach embodied in the book, which is is to emphasise both unity and diversity: unity by separate treatment of tasks and features, both of which are common across any machine learning approach but are often taken for granted; and diversity through coverage of a wide range of logical, geometric and probabilistic models.

Clearly, one cannot hope to cover all of machine learning to any reasonable depth within the confines of 400 pages. In the Epilogue I list some important areas for further study which I decided not to include. In my view, machine learning is a marriage of statistics and knowledge representation, and the subject matter of the book was chosen to reinforce that view. Thus, ample space has been reserved for tree and rule learning, before moving on to the more statistically-oriented material. Throughout the book I have placed particular emphasis on intuitions, hopefully amplified by a generous use of examples and graphical illustrations, many of which derive frommy work on the use of ROC analysis in machine learning.

Related posts:

An introduction to neural networks - Kevin Gurney & University of Sheffield
Neural Networks - A visual introduction for beginners - Michael Taylor
Deep Learning with Python - A Hands-on Introduction - Nikhil Ketkar
Statistical Methods for Machine Learning - Disconver how to Transform data into Knowledge with Pytho...
Neural Networks and Deep Learning - Charu C.Aggarwal
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Python Data Structures and Algorithms - Benjamin Baka
Introduction to the Math of Neural Networks - Jeff Heaton
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Natural Language Processing Recipes - Akshay Kulkni & Adarsha Shivananda
Foundations of Machine Learning second edition - Mehryar Mohri & Afshin Rostamizadeh & Ameet Talwalk...
Deep Learning with Python - Francois Chollet
Machine Learning with Python for everyone - Mark E.Fenner
Deep Learning dummies first edition - John Paul Mueller & Luca Massaron
Python Machine Learning Cookbook - Practical solutions from preprocessing to Deep Learning - Chris A...
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Artificial Intelligence by example - Denis Rothman
Python Deep Learning - Valentino Zocca & Gianmario Spacagna & Daniel Slater & Peter Roelants
Machine Learning - A Probabilistic Perspective - Kevin P.Murphy
Python Machine Learning - Sebastian Raschka
Natural Language Processing in action - Hobson Lane & Cole Howard & Hannes Max Hapke
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
Natural Language Processing with Python - Steven Bird & Ewan Klein & Edward Loper
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Machine Learning Applications Using Python - Cases studies form Healthcare, Retail, and Finance - Pu...
Introduction to Scientific Programming with Python - Joakim Sundnes
Deep Learning Illustrated - A visual, Interactive Guide to Arficial Intelligence First Edition - Jon...
Deep Learning from Scratch - Building with Python form First Principles - Seth Weidman
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster