Introduction to Deep Learning Business Application for Developers – Armando Vieira & Bernardete Ribeiro

Deep learning has taken artificial intelligence by storm and has infiltrated almost every business application. Because almost all content and transactions are now being recorded in a digital format, a vast amount of data is available for exploration by machine learning algorithms. However, traditional machine learning techniques struggle to explore the intricate relationships presented in this so-called Big Data. This is particularly acute for unstructured data such as images, voice, and text.

Deep learning algorithms can cope with the challenges in analyzing this immense data flow because they have a very high learning capacity. Also, deep neural networks require little, if any, feature engineering and can be trained from end to end. Another advantage of the deep learning approach is that it relies on architectures that require minimal supervision (in other words, these architectures learn automatically from data and need little human intervention). These architectures are the so-called “unsupervised” of weakly supervised learning. Last, but not least, they can be trained as generative processes. Instead of mapping inputs to outputs, the algorithms learn how to generate both inputs and outputs from pure noise (i.e., generative adversarial networks). Imagine generating Van Gogh paintings, cars, or even human faces from a combination of a few hundred random numbers.

Google language translation services, Alexa voice recognition, and self-driving cars all run on deep learning algorithms. Other emergent areas are heavily dependent on deep learning, such as voice synthesis, drug discovery, and facial identification and recognition. Even creative areas, such as music, painting, and writing, are beginning to be disrupted by this technology. In fact, deep learning has the potential to create such a profound transformation in the economy that it will probably trigger one of the biggest revolutions that humanity has ever seen.

Related posts:

Python Machine Learning Third Edition - Sebastian Raschka & Vahid Mirjalili
Introduction to Machine Learning with Python - Andreas C.Muller & Sarah Guido
Deep Learning with Keras - Antonio Gulli & Sujit Pal
TensorFlow for Deep Learning - Bharath Ramsundar & Reza Bosagh Zadeh
Deep Learning dummies second edition - John Paul Mueller & Luca Massaronf
Introducing Data Science - Davy Cielen & Arno D.B.Meysman & Mohamed Ali
Coding Theory - Algorithms, Architectures and Application
Fundamentals of Deep Learning - Nikhil Bubuma
Generative Deep Learning - Teaching Machines to Paint, Write, Compose and Play - David Foster
Python Data Analytics with Pandas, NumPy and Matplotlib - Fabio Nelli
Python 3 for Absolute Beginners - Tim Hall & J.P Stacey
Hands-On Machine Learning with Scikit-Learn and TensorFlow - Aurelien Geron
Understanding Machine Learning from theory to algorithms - Shai Shalev-Shwartz & Shai Ben-David
Neural Networks and Deep Learning - Charu C.Aggarwal
Machine Learning with Python for everyone - Mark E.Fenner
Machine Learning Mastery with Python - Understand your data, create accurate models and work project...
Deep Learning with Python - Francois Cholletf
Deep Learning and Neural Networks - Jeff Heaton
Grokking Deep Learning - MEAP v10 - Andrew W.Trask
Superintelligence - Paths, Danges, Strategies - Nick Bostrom
Introduction to Scientific Programming with Python - Joakim Sundnes
Artificial Intelligence - A Very Short Introduction - Margaret A.Boden
Scikit-learn Cookbook Second Edition over 80 recipes for machine learning - Julian Avila & Trent Hau...
Neural Networks - A visual introduction for beginners - Michael Taylor
An introduction to neural networks - Kevin Gurney & University of Sheffield
Learning scikit-learn Machine Learning in Python - Raul Garreta & Guillermo Moncecchi
Python for Programmers with introductory AI case studies - Paul Deitel & Harvey Deitel
Amazon Machine Learning Developer Guild Version Latest
Medical Image Segmentation Using Artificial Neural Networks
Building Chatbots with Python Using Natural Language Processing and Machine Learning - Sumit Raj
Deep Learning with Theano - Christopher Bourez
Deep Learning in Python - LazyProgrammer